分享

Ball -- From MathWorld

 weicat 2006-02-13


COMMENT On this PageDOWNLOAD Mathematica Notebook

The n-ball, denoted B^n, is the interior of a sphere S^(n-1), and sometimes also called the n-disk. (Although physicists often use the term "sphere" to mean the solid ball, mathematicians definitely do not!)

BallVolume

The equation for the surface area of the n-dimensional unit hypersphere S^n gives the recurrence relation

S_(n+2)==(2piS_n)/n. (1)

Using Gamma(n+1)==nGamma(n) then gives the hypercontent of the n-ball B^n of radius R as

V_n==(S_nR^n)/n==(pi^(n/2)R^n)/((1/2n)Gamma(1/2n))==(pi^(n/2)R^n)/(Gamma(1+1/2n)) (2)

(Sommerville 1958, p. 136; Apostol 1974, p. 430; Conway and Sloane 1993). Strangely enough, the content reaches a maximum and then decreases towards 0 as n increases. The point of maximal content of a unit n-ball satisfies

(dV_n)/(dn) = (pi^(n/2)[lnpi-psi_0(1+1/2n)])/(2Gamma(1+1/2n)) (3)
= (pi^(n/2)[gamma+lnpi-H_(n/2)])/(nGamma(1/2n)) (4)
= 0, (5)

where psi_0(x) is the digamma function, Gamma(z) is the gamma function, gamma is the Euler-Mascheroni constant, and H_n is a harmonic number. This equation cannot be solved analytically for n, but the numerical solution to

gamma+lnpi-H_(n/2)==0 (6)

is n==5.25694... (Sloane‘s A087300) (Wells 1986, p. 67). As a result, the five-dimensional unit ball B^5 has maximal content (Le Lionnais 1983; Wells 1986, p. 60).

The following table gives the content for the unit radius n-ball (Sloane‘s A072345 and A072346), ratio of the volume of the n-ball to that of a circumscribed hypercube (Sloane‘s A087299), and surface area of the n-ball (Sloane‘s A072478 and A072479).

n V_n V_(ball)/V_(cube) S_n
0 1 1 0
1 2 1 2
2 pi 1/4pi 2pi
3 4/3pi 1/6pi 4pi
4 1/2pi^2 1/(32)pi^2 2pi^2
5 8/(15)pi^2 1/(60)pi^2 8/3pi^2
6 1/6pi^3 1/(384)pi^3 pi^3
7 (16)/(105)pi^3 1/(840)pi^3 (16)/(15)pi^3
8 1/(24)pi^4 1/(6144)pi^4 1/3pi^4
9 (32)/(945)pi^4 1/(15120)pi^4 (32)/(105)pi^4
10 1/(120)pi^5 1/(122880)pi^5 1/(12)pi^5

Let V_n denote the volume of an n-dimensional ball of radius R. Then

sum_(n==0,2,4,...)^(infty)V_n = e^(piR^2) (7)
sum_(n==1,3,5,...)^(infty)V_n = e^(piR^2)erf(sqrt(pi)R), (8)

so

sum_(n==0)^inftyV_n==e^(piR^2)[1+erf(Rsqrt(pi))], (9)

where erf(x) is the erf function (Freden 1993).

SEE ALSO: Alexander‘s Horned Sphere, Ball Line Picking, Ball Point Picking, Ball Tetrahedron Picking, Ball Triangle Picking, Banach-Tarski Paradox, Bing‘s Theorem, Bishop‘s Inequality, Bounded Set, Closed Ball, Disk, Golf Ball, Hairy Ball Theorem, Hypersphere, Open Ball, Sphere, Tennis Ball Theorem, Unit Ball, Wild Point. [Pages Linking Here]

REFERENCES:

Apostol, T. M. Mathematical Analysis. Reading, MA: Addison-Wesley, 1974.

Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 9, 1993.

Freden, E. Problem 10207. "Summing a Series of Volumes." Amer. Math. Monthly 100, 882, 1993.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 58, 1983.

Sloane, N. J. A. Sequences A072345, A072346, A072478, A072479, A087299, and A087300 in "The On-Line Encyclopedia of Integer Sequences."

Sommerville, D. M. Y. An Introduction to the Geometry of n Dimensions. New York: Dover, p. 136, 1958.

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, 1986.



CITE THIS AS:

Eric W. Weisstein. "Ball." From MathWorld--A Wolfram Web Resource. http://mathworld./Ball.html


1999 CRC Press LLC, ?1999-2006 Wolfram Research, Inc. | Terms of Use

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多