分享

哥德巴赫猜想的解决

 qdxinyu 2009-09-14
转载百度百科哥德巴赫猜想的重点,见http://baike.baidu.com/view/1808.htm
     数学家认可的
  `````````p-1``````````1````````````N
  r(N)≈2∏——∏(1- ————)——————
  .........P-2......(P-1)^2.....(lnN)^2
  r(N)为将偶数表为两个素数之和n=p+p`的表示个数,
  ∏表示各参数连乘,ln表示取自然对数,^2表示取平方数。
  第一个∏的参数P是大于2的且属于该偶数的素因子的素数。
  第二个∏的参数P是大于2且不大于√N的素数。
  第一个∏的数值是分子大于分母,大于1。
  第二个∏的数值是孪生素数的常数,其2倍数就=1.320..大于1。
  N/(lnN)是计算N数内包含的素数的个数,(1/lnN)素数与数的比例。
  有不少人论述了:(N数内包含的素数的个数)与(素数与数的比例)的乘积 
  大于一。
  即:r(N)==(大于1的数)(大于1的数)(大于1的数)==大于1的数
  值得推荐的论述为
  由素数定理知:π(N)≈N/(lnN)
  π(N)≈(0.5)(N^0.5)[N^0.5]/ln(N^0.5)]==(0.5)(N^0.5)π(N^0.5),
  1/(lnN)≈π(N)/N(0.5)==(0.5)π(N^0.5)/(N^0.5)
  公式的主项==N/(lnN)^2==[(0.5)π(N^0.5)]^2
  约等于(一半的平方根内素数个数)的平方数。
  即:在{一半的平方根内素数个数**大于一时,换一句话说就是:
    第二个素数的平方数以上的偶数,公式的主项就大于1。
        青岛 王新宇
          2009.9.14
       
 

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多