分享

青蛙约会

 旭龙 2010-06-29
Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4

解如下:
就是扩展欧几里德算法-求解不定方程,线性同余方程。  设过s步后两青蛙相遇,则必满足以下等式:
    (x+m*s)-(y+n*s)=k*l(k=0,1,2....)
  稍微变一下形得:
    (n-m)*s+k*l=x-y
     令n-m=a,k=b,x-y=c,即
    a*s+b*l=c
  只要上式存在整数解,则两青蛙能相遇,否则不能。
  首先想到的一个方法是用两次for循环来枚举s,l的值,看是否存在s,l的整数解,若存在则输入最小的s,
但显然这种方法是不可取的,谁也不知道最小的s是多大,如果最小的s很大的话,超时是明显的。
  其实这题用欧几里德扩展原理可以很快的解决,先来看下什么是欧几里德扩展原理:
  欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
  定理:gcd(a,b) = gcd(b,a mod b)
  证明:a可以表示成a = kb + r,则r = a mod b
  假设d是a,b的一个公约数,则有
  d|a, d|b,而r = a - kb,因此d|r
  因此d是(b,a mod b)的公约数
  假设d 是(b,a mod b)的公约数,则
  d | b , d |r ,但是a = kb +r
  因此d也是(a,b)的公约数
  因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证
  欧几里德算法就是根据这个原理来做的,其算法用C++语言描述为: 
  int Gcd(int a, int b)
  {
       if(b == 0)
           return a;
     return Gcd(b, a % b);
  }
  当然你也可以写成迭代形式:
  int Gcd(int a, int b)
  {
       while(b != 0)
       {
           int r = b;
           b = a % b;
            a = r;
       }
       return a;
  }
  本质上都是用的上面那个原理。
  补充: 扩展欧几里德算法是用来在已知a, b求解一组x,y使得a*x+b*y=Gcd(a,b)(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。下面是一个使
用C++的实现:
  int exGcd(int a, int b, int &x, int &y)
  {
       if(b == 0)
       {
           x = 1;
           y = 0;
          return a;
       }
       int r = exGcd(b, a % b, x, y);
       int t = x;
       x = y;
       y = t - a / b * y;
       return r;
  }
  把这个实现和Gcd的递归实现相比,发现多了下面的x,y赋值过程,这就是扩展欧几里德算法的精髓。
  可以这样思考:
  对于a' = b, b' = a % b 而言,我们求得 x, y使得 a'x + b'y = Gcd(a', b')
  由于b' = a % b = a - a / b * b (注:这里的/是程序设计语言中的除法)
  那么可以得到:
  a'x + b'y = Gcd(a', b') ===>
  bx + (a - a / b * b)y = Gcd(a', b') = Gcd(a, b) ===>
  ay +b(x - a / b*y) = Gcd(a, b)
  因此对于a和b而言,他们的相对应的p,q分别是 y和(x-a/b*y).
  在网上看了很多关于不定方程方程求解的问题,可都没有说全,都只说了一部分,看了好多之后才真正弄清楚不定方程的求解全过程,步骤如下:
  求a * x + b * y = n的整数解。
  1、先计算Gcd(a,b),若c不能被Gcd(a,b)整除,则方程无整数;否则,在方程两边同时除以Gcd(a,b),得到新的不定方程a' * x + b' * y = n',此时Gcd(a',b')=1;
     2、利用上面所说的欧几里德算法求出方程a' * x + b' * y = 1的一组整数解x0,y0,则n' * x0,n' * y0是方程a' * x + b' * y = n'的一组整数解;
  3、根据数论中的相关定理,可得方程a' * x + b' * y = n'的所有整数解为:
         x = n' * x0 + b' * t
y = n' * y0 - a' * t
(t为整数)
    上面的解也就是a * x + b * y = n 的全部整数解。
  下面来看看我这题的代码:
  # include <stdio.h>
  __int64 gcd(__int64 a,__int64 b)//求a,b的最大公约数
  {
if(b==0)
   return a;
return gcd(b,a%b);
  }
  void exgcd(__int64 a,__int64 b,__int64 &m,__int64 &n)//求a * x + b * y = Gcd(a,b)的一组整数解,结果储存在m,n中
  {
if(b==0)
{
   m=1;
   n=0;
   return ;
}
exgcd(b,a%b,m,n);
__int64 t;
t=m;
m=n;
n=t-a/b*n;
  }
  int main()
  {
__int64 x,y,m,n,l,a,b,c,k1,k2,r,t;
while(scanf("%I64d%I64d%I64d%I64d%I64d",&x,&y,&m,&n,&l)!=EOF)
{
   a=n-m;
   b=l;
   c=x-y;
   r=gcd(a,b);
   if(c%r)//如果c不能被r整除,则由数论中的相关定理可知整数解一定不存在
   {
     printf("Impossible\n");
     continue;
   }
   a/=r;
   b/=r;
   c/=r;
   exgcd(a,b,k1,k2);//求a*k1+b*k2=Gcd(a,b)的整数解,此时Gcd(a,b)=1
   t=c*k1/b;//见注1
   k1=c*k1-t*b;
   if(k1<0)
     k1+=b;
   printf("%I64d\n",k1);
}
return 0;
  }

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多