来源:http://www.cnblogs.com/cvlabs/archive/2010/05/08/1730319.html
Matlab协方差矩阵的计算原理 a = -1 1 2 -2 3 1 4 0 3 for i=1:size(a,2) for j=1:size(a,2) c(i,j)=sum((a(:,i)-mean(a(:,i))).*(a(:,j)-mean(a(:,j))))/(size(a,1)-1); end end c = 10.3333 -4.1667 3.0000 -4.1667 2.3333 -1.5000 3.0000 -1.5000 1.0000 c为求得的协方差矩阵,在matlab以矩阵a的每一列为变量,对应的每一行为样本。这样在矩阵a中就有3个列变量分别为a(:,1), a(:,2), a(:,3)。 在协方差矩阵c中,每一个元素c(i,j)为对第i列与第j列的协方差,例如c(1,2) = -4.1667为第一列与第二列的协方差。
拿c(1,2)的求解过程来说 c(1,2)=sum((a(:,1)-mean(a(:,1))).*(a(:,2)-mean(a(:,2))))/(size(a,1)-1); 1. a(:,1)-mean(a(:,1)),第一列的元素减去该列的均值得到 -1.3333 -2.3333 3.6667 2, a(:,2)-mean(a(:,2)),第二列的元素减去该列的均值得到 -0.3333 1.6667 -1.3333 3, 再将第一步与第二部的结果相乘 -1.3333 -0.3333 0.4444 -2.3333 .* 1.6667 = -3.8889 3.6667 -1.3333 -4.8889
4, 再将结果求和/size(a,1)-1 得 -4.1667,该值即为c(1,2)的值。
再细看一下是不是与协方差公式:Cov(X,Y) = E{ [ (X-E(X) ] [ (Y-E(Y) ] } 过程基本一致呢,只是在第4步的时候matlab做了稍微的调整,自由度为n-1,减少了一行的样本值个数。 |
|