720815 / 解题技巧 / 三角形垂心的性质总结

分享

   

三角形垂心的性质总结

2013-12-08  720815
三角形垂心的性质总结
山西省原平市第一中学 任所怀

三角形的垂心定理:在三角形ABC中,求证:它的三条高交于一点。

证明:如图:作BE于点ECF^AB于点F,且BECF于点H,连接AH并延长交BC于点D。现在我们只要证明AD^BC即可。

因为CF^ABBE
所以 四边形BFEC为圆内接四边形。
四边形AFHE为圆内接四边形。
所以FAH=FEH=∠FEB=∠FCB
由∠FAH=∠FCB得
四边形AFDC为圆内接四边形
所以∠AFC=∠ADC=90
°
即AD^BC

点评:以上证明主要应用了平面几何中的四点共圆的判定与性质。
三角形垂心的性质定理1

锐角三角形的垂心是以三个垂足为顶点的三角形的内心。

如上图,在三角形ABC中,ADCFBE分别为BCABAC上的高,DFE分别为垂足,H为三角形ABC的垂心。求证:H为三角形DFE的内心。

证明:要证H为三角形DFE的内心,只需证明HFHEHD分别平分∠DFE、∠FED、∠EDF。

同样我们还是利用四点共圆的判定与性质来证明。
    由BCEF四点共圆得∠EFC=∠EBC  (都是弧CE所对的圆周角)
    由HFBD四点共圆得∠HFD=∠HBD=∠EBC   (都是弧HD所对的圆周角)

所以∠EFH=∠HFD   所以 HF平分∠EFD。
同理 HE平分∠FED;HD平分∠FDE
   所以
H为三角形DFE的内心。

点评:以上两个问题都用到了四点共圆。因为在这个图形中共可得到6个圆内接四边形,你不妨找一找。

三角形垂心的向量表示:

中,若点O满足,则点O为三角形ABC的垂心。

   证明:由,所以
同理OB,则点O为垂心。

三角形垂心性质定理2

若三角形的三个顶点都在函数的图象上,则它的垂心也在这个函数图象上。

证明:设点O(x,y)的垂心,则上面的向量表示得

因为的三个顶点都在函数的图象上,所以设

因为,所以

所以

所以                         (1)

同理:由         (2)

联立(1)(2)两式,就可解出 

显然有垂心O在函数的图象上。

点评:此题恰当地应用了垂心的向量表示,把几何问题转化成了代数问题,完美体现了数形结合的数学思想。

2005年全国一卷理科)的外接圆的圆心为O,两条边上的高的交点为H,则实数m =       

 

分析:H显然为的垂心,我们可取特殊情况来猜想m的值。于是我取为直角三角形,角A为直角,此时H点与A点重合,且OBC的中点(如图所示)。此时,于是猜想m=1.

而对于一般情况,上面问题,我们不妨称之为三角形的垂心性质定理3

的外心为O,垂心为H,则

证明:作出的外接圆和外接圆直径AD,连接BD,CD
因为直径所对圆周角为直角,所以有
     因为H的垂心,所以
所以HC//BDBH//DC,所以四边形BDCH为平行四边形,所以

    因为,且
所以

点评:这条性质联系了三角形的外心与垂心,所得向量关系也相当简洁。以此为背景出高考题,也确实体现了命题者深厚的知识功底。

三角形垂心性质定理3

三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。

即:的外心为O,垂心为HDBC中点,则AH=2OD

证明:因为DBC中点
所以
由性质2知:

所以AH=2OD

点评:性质定理3,也可看做是性质定理2的推论。

三角形垂心性质定理4

锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2

分析:应用上面的性质定理3,上面这一结论可改为
锐角三角形的外接圆与内切圆径之和等于外心到三角形三边距离之和。

即:如图在锐角中,O为外心,D,E,F分别为三边的中点。设外接圆半径为R,内切圆半径为r,OD+OE+OF=R+r.

证明:在锐角中,O为外心,D,E,F分别为三边的中点,则OF
所以有
=

中角A,B,C所对边的长分别为a,b,c.

在圆O中,弧AB所对的圆心角=2C

又因OA=OBOF,所以
OF=OA*cosC=RcosC

同理OD=R*cosB, OE=R*cosA

所以

而由三角形内切圆的性质知:

所以 
这个式子就指出了内切圆半径与外接圆半径的关系。

而要证OD+OE+OF=R+r
需证:RcosA+RcosB+RcosC=R+
即需证

需证(b+c)cosA+(a+c)cosB+(a+b)cosC=a+b+c

而对上式的证明我们可采用正弦定理,化角为边,

即需证:

sinBcosA+sinCcosA+sinAcosB+sinCcosB+sinAcosC+sinBcosC=sinA+sinB+sinC

需证:sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC

而因为A+B+C= 所以sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC显然成立
所以命题得证。

点评:此题的证明充分联系我们初高中的大量知识,真是做到了“八方联系,浑然一体”(孙维刚老师语)。通过这样的一个问题,我们的数学能力将大大提高。

三角形垂心性质定理5

HABC四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一垂心组)

此定理的证明相对简单,读者不妨自已试试。在此提出这个性质,主要是看到这里存在的一种广义对称性,即四个点中每一点都可为垂心。这个结论进一步提醒我们要经常换个角度相问题。

三角形垂心性质定理6

HABC的垂心,则 ABCABHBCHACH的外接圆是等圆。

分析:要证两圆为等圆,只要证明它们的半径(或直径)相等就可以啦。而这两圆都是三角形的外接圆,于是我们就想到了正弦定理。

的直径为的直径为

因为HD

所以 四边形BEHD是圆内接四边形

所以
所以sinB=sin
所以=

所以的外接圆为等圆。

同理ABCABHBCHACH的外接圆是等圆。

证明略。

点评:该题的证明过程中,应用到了性质1中的圆内接四边形性质和正弦定理。这也正是在提示我们要注意八方联系。

以上我对与三角形垂心有关的性质做了一些总结,当然也难免还有其它性质,我还没有发现。我写文章的目的,也就是在于启发读者经常进行总结,在总结中我们才会有新的发现和创新。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多

    ×
    ×

    ¥.00

    微信或支付宝扫码支付:

    开通即同意《个图VIP服务协议》

    全部>>