分享

因式分解

 幽月之魂 2014-08-12

因式分解

      因式分解,在数学中一般理解为把一个多项式分解为两个或多个的因式的过程。在这个过后会得出一堆较原式简单的多项式的积。例如多项式x2-4 可被因式分解为(x+2)(x-2)。

因式分解的定义和主要方法常规因式分解主要公式 定义把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。

意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高学生综合分析和解决问题的能力。

分解因式与整式乘法为相反变形。

同时也是解一元二次方程中因式分解法的重要步骤.

在高等数学上因式分解有一些重要结论,在初等数学层面上证明很困难,但是理解很容易。

1、因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。

2 、所有的三次和三次以上多项式在实数范围内都可以因式分解。这看起来或许有点不可思议。比如X^4+1,这是一个一元四次多项式,看起来似乎不能因式分解。但是它的次数高于3,所以一定可以因式分解。如果有兴趣,你也可以用待定系数法将其分解,只是分解出来的式子并不整洁。

3 、因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。因式分解很多时候就是用来提公因式的。寻找公因式可以用辗转相除法来求得。标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以但比较笨,不过能有效地解决找公因式的问题。

因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。

注意四原则:

1.分解要彻底(是否有公因式,是否可用公式)

2.最后结果只有小括号

因式分解3.最后结果中多项式首项系数为正

归纳方法:

1.提公因式法。

2.运用公式法。

3.分组分解法。

4.拼凑法。

5.组合分解法。

6.十字相乘法。

7.双十字相乘法。

8.配方法。

9.拆项补项法。

10.换元法。

11.长除法。

12.求根法。

13.图象法。

14.主元法。

15.待定系数法。

16.特殊值法。

17.因式定理法。

基本方法

各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。[1]

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。

口诀:找准公因式,一次要提尽全家都搬走,留1把家守提负要变号,变形看奇偶。

如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。

平方差公式:

反过来为

完全平方公式:

反过来为

(a-b)^2=a^2-2ab+b^2 a^2-2ab+b^2=(a-b)^2

注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

两根式:ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]

  两根式

立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)

立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)

完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.

公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

例如:a^2+4ab+4b^2 =(a+2b)^2。

1.分解因式技巧掌握:

①分解因式是多项式的恒等变形,要求等式左边必须是多项式

②分解因式的结果必须是以乘积的形式表示

③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数

④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

2.提公因式法基本步骤:

(1)找出公因式

(2)提公因式并确定另一个因式:

①第一步找公因式可按照确定公因式的方法先确定系数再确定字母

②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式

③提完公因式后,另一因式的项数与原多项式的项数相同。

解方程法

通过解方程来进行因式分解,如

X^2+2X+1=0 ,解,得X1=-1,X2=-1,就得到原式=(X+1)×(X+1)

分组分解是解方程的一种简洁的方法,下面是这个方法的详细讲解。

能分组分解的多项式有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。

比如:

ax+ay+bx+by

=a(x+y)+b(x+y)

=(a+b)(x+y)

我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。

同样,这道题也可以这样做。

ax+ay+bx+by

=x(a+b)+y(a+b)

=(a+b)(x+y)

几道例题:

1. 5ax+5bx+3ay+3by

解法:=5x(a+b)+3y(a+b)

  

=(5x+3y)(a+b)

说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。

2. x^3-x^2+x-1

解法:=(x^3-x^2)+(x-1)

=x^2(x-1)+ (x-1)

=(x-1)(x^2+1)

利用二二分法,提公因式法提出 x^2,然后相合轻松解决。

3. x^2-x-y^2-y

  相关公式

解法:=(x^2-y^2)-(x+y)

=(x+y)(x-y)-(x+y)

=(x+y)(x-y-1)

利用二二分法,再利用公式法a^2-b^2=(a+b)(a-b),然后相合解决。

学奥数的同学必须会,但是一般水平的学生也可以看一看,在解题时是一个很好用的方法,也很简单。

这种方法有两种情况。

①x^2+﹙p+q﹚x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .

例1:x^2-2x-8

=(x-4)(x+2)

②kx^2+mx+n型的式子的因式分解

如果有k=ab,n=cd,且有ad+bc=m时,那么kx^2+mx+n=(ax+c)(bx+d).

例2:分解7x^2-19x-6

图示如下:a=1 b=7 c=2 d=-3

  

  

因为 -3×7=-21,1×2=2,且-21+2=-19,

所以,原式=(7x+2)(x-3).

十字相乘法口诀:分二次项,分常数项,交叉相乘求和得一次项。

例3:6X^2+7X+2

第1项二次项(6X^2)拆分为:2×3

第3项常数项(2)拆分为:1×2

2(X) 3(X)

1 2

对角相乘:1×3+2×2得第2项一次项(7X)

∴6X^2+7X+6=(2X+1)(3X+2)

与之对应的还有双十字相乘法,也可以学一学。

这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。

例如:bc(b+c)+ca(c-a)-ab(a+b)

=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=(bc+ca)(c-a)+(bc-ab)(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b).

对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。

例如:x^2+3x-40

=x^2+3x+2.25-42.25

=(x+1.5)^2-(6.5)^2

=(x+8)(x-5).

对于多项式f(x),如果f(a)=0,那么f(x)必含有因式x-a.

例如:f(x)=x^2+5x+6,f(-2)=0,则可确定x+2是x^2+5x+6的一个因式。(事实上,x^2+5x+6=(x+2)(x+3).)

注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数

2.对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。注意:换元后勿忘还元。

例如在分解(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则

原式=(y+1)(y+2)-12

=y^2+3y+2-12=y^2+3y-10

=(y+5)(y-2)

=(x^2+x+5)(x^2+x-2)

=(x^2+x+5)(x+2)(x-1).

也可以参看右图。

令多项式f(x)=0,求出其根为x^1,x^2,x^3,……,x^n,则该多项式可分解为f(x)=a(x-x^1)(x-x^2)(x-x^3)……(x-x^n) .

例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0,

则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.

所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).

令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x^1,x^2,x^3,……x^n ,则多项式可因式分解为f(x)= f(x)=a(x-x^1)(x-x^2)(x-x^3)……(x-x^n).

与方法⑼相比,能避开解方程的繁琐,但是不够准确。

例如在分解x^3+2x^2-5x-6时,可以令y=x^3+2x^2-5x-6.

作出其图像,与x轴交点为-3,-1,2

则x^3+2x^2-5x-6=(x+1)(x+3)(x-2).

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

特殊值法

将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例如在分解x^3+9x^2+23x+15时,令x=2,则

x^3+9x^2+23x+15=8+36+46+15=105,

将105分解成3个质因数的积,即105=3×5×7 .

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值,

则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。

待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

例如在分解x^4-x^3-5x^2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。

于是设x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d)

  相关公式

=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd

由此可得

a+c=-1,

ac+b+d=-5,

ad+bc=-6,

bd=-4.

解得a=1,b=1,c=-2,d=-4.

则x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4).

双十字相乘法

双十字相乘法属于因式分解的一类,类似于十字相乘法。

双十字相乘法就是二元二次六项式,启始的式子如下:

ax^2+bxy+cy^2+dx+ey+f

x、y为未知数,其余都是常数

用一道例题来说明如何使用。

例:分解因式:x^2+5xy+6y^2+8x+18y+12.

分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。

解:图如下,把所有的数字交叉相连即可

x  2y  2

x  3y  6

∴原式=(x+2y+2)(x+3y+6).

双十字相乘法其步骤为:

①先用十字相乘法分解2次项,如十字相乘图①中x^2+5xy+6y^2=(x+2y)(x+3y)

②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y^2+18y+12=(2y+2)(3y+6)

③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。

二次多项式

(根与系数关系二次多项式因式分解)

例:对于二次多项式 aX^2+bX+c(a≠0)

aX^2+bX+c=a[X^2+(b/a)X+c/a].

当△=b^2-4ac≥0时,设aX^2+bX+c=0的解为X1,X2

=a(X^2-(X1+X2)X+X1X2)

=a(X-X1)(X-X2).

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解

④分解因式,必须进行到每一个多项式因式都不能再分解为止。[2]

也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.

解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项)

=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方)

=[(1+y)+x^2(1-y)]^2-(2x)^2

=[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]

=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]

=[(x+1)^2-y(x+1)(x-1)][(x-1)^2-y(x+1)(x-1)]

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).

2.求证:对于任何整数x,y,下式的值都不会为33:

x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.

解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

=(x+3y)(x^4-5x^2y^2+4y^4)

=(x+3y)(x^2-4y^2)(x^2-y^2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y).

当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。

3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形。

分析:此题实质上是对关系式的等号左边的多项式进行因式分解。

证明:∵-c^2+a^2+2ab-2bc=0,

∴(a+c)(a-c)+2b(a-c)=0.

∴(a-c)(a+2b+c)=0.

∵a、b、c是△ABC的三条边,

∴a+2b+c>0.

∴a-c=0,

即a=c,△ABC为等腰三角形。

4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。

解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)

=-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).

1. 应用于多项式除法。

:a(b?1)(ab+2b+a)

 说明:(ab+b)2?(a+b)2 = (ab+b+a+b)(ab+b?a?b) = (ab+2b+a)(ab?a) = a(b?1)(ab+2b+a).

2. 应用于高次方程的求根。

3. 应用于分式的通分与约分

顺带一提,梅森合数分解已经取得一些微不足道的进展:

1,p=4r+3,如果8r+7也是素数,则:(8r+7)|(2^P-1)。即(2p+1)|(2^P-1)

例如:

23|(2^11-1);;11=4×2+3

47|(2^23-1);;23=4×5+3

167|(2^83-1);,,,.83=4×20+3

2,p=2^n×3^2+1,,则(6p+1)|(2^P-1),

例如:223|(2^37-1);;37=2×2×3×3+1

439|(2^73-1);73=2×2×2×3×3+1

3463|(2^577-1);;577=2×2×2×2×2×2×3×3+1

3,p=2^n×3^m×5^s-1,则(8p+1)|(2^P-1)

例如;233|(2^29-1);29=2×3×5-1

1433|(2^179-1);179=2×2×3×3×5-1

1913|(2^239-1);239=2×2×2×2×3×5-1

因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举下例,可供参考。

例1 把-a^2-b^2+2ab+4分解因式。

解:-a^2-b^2+2ab+4=-(a^2-2ab+b^2-4)=-[(a-b)^2-4]=-(a-b+2)(a-b-2)

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x^2+4y^2=(-3x)^2-(2y)^2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。

这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。

分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x^4y^2-5x^2y^2-9y^2=y^2(4x^4-5x^2-9)=y(x+1)(4x^2-9)的错误,因为4x^2-9还可分解为(2x+3)(2x-3)。

考试时应注意:[3]

在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!

由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。

平方差公式

(a+b)(a-b)=a^2-b^2

完全平方公式

(a+b)^2=a^2+2ab+b^;2

(a-b)^2=a^2-2ab+b^2

立方和(差)

两数差乘以它们的平方和与它们的积的和等于两数的立方差。

即a^3-b^3=(a-b)(a^2+ab+b^2)

证明如下: a^3-b^3=a^3-3a^2b+3ab^2-b^3

所以a^3-b^3=(a-b)a^3-[-3(a^2)b+3ab^2]=(a-b)(a-b)^2+3ab(a-b)

=(a-b)(a^2-2ab+b^2+3ab)=(a-b)(a^2+ab+b^2)

十字相乘公式

十字相乘法能把某些二次三项式分解因式。要务必注意各项系数的符号。

(x+a)(x+b)=x^2+(a+b)x+ab

参考资料:

1.

中学数学网 

http://www./

2.

因式分解课件 

http://www./sx/156/247/

扩展阅读:

1.

数学学科网

http://sx.zxxk.com/

2.
3.

初中数学—初中频道—中国教育在线

http://chuzhong.eol.cn/czsx_11923/

3.


    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多