分享

显存容量

 低调669 2014-09-30

1 简介 编辑本段

显存容量显存容量

显存也被叫做显示内存、帧缓存,它是用来存储显示芯片处理过或者即将读取的渲染数据。如同计算机的内存一样,显存是用来存储图形数据的硬件。在显示器上显示出的画面是由一个个的像素点构成的,而每个像素点都以4至64位的数据来控制它的亮度和色彩,这些点构成一帧的图形画面。为了保持画面流畅,要输出和要处理的多幅帧的像素数据必须通过显存来保存,达到缓冲效果,再交由显示芯片和CPU调配,最后把运算结果转化为图形输出到显示器上。

显存容量的大小决定着显存临时存储数据的能力,在一定程度上也会影响显卡的性能。显存容量也是随着显卡的发展而逐步增大的,并且有越来越增大的趋势。显存容量从早期的512KB、1MB、2MB等极小容量,发展到8MB、12MB、16MB、32MB、64MB、128MB,一直到目前主流的1GB、2GB和高档显卡的4GB,8GB.现在1G 2G已经成为主流。

2 概述 编辑本段

2.1 分辨率与显存

普通2D画面:每一帧画面需要的显存容量=(水平分辨率×垂直分辨率×颜色位数)/8bit

普通3D画面:每一帧画面需要的显存容量=(水平分辨率×垂直分辨率×颜色位数×3)/8bit

从上公式可预知使用高分辨率和开启全屏抗锯齿、各向异性过滤、物理效果模拟、多边形顶点数据运算、海量三    维函数运算等高级画面效果后,计算速度较慢的显示芯片需要更多的显存空间才能流畅显示。早期显卡的显存容量只具有512KB、1MB、2MB等极小容量时,显存容量成为最大分辨率的一个瓶颈;但目前主流显卡已经淘汰256MB的显存容量,主流中低端级显卡的显存容量是512MB或1024MB,某些高端显卡甚至已经具有2GB至6GB的显存,在这样的情况下,显存容量早已经不再是影响最大分辨率的因素。

3 显存参数 编辑本段

3.1 频率

现在显卡性能越来越强,这当然不能忽略显示芯片的发展速度快的事实,但显存的频率、位宽与带宽也制约着显卡的总体性能。高级的显存能让显示芯片全力工作,令输出的画面更流畅。

显存频率越高数据在显存上记录与读取的速度越快,而不同显存能提供的显存频率也差异很大,早期显存有133MHz、166MHz、400MHz、500MHz、600MHz、650MHz等,现时中端产品有800MHz、1200MHz、1600MHz、2200MHZ甚至更高。

3.2 位宽

显存位宽是显存在一个时钟周期内所能传送数据的位数的重要参数之一,位数越大则瞬间所能传输的数据量越大。目前市场上的显存位宽有64位、128位、256位、384位、448位和512位等。

3.3 带宽

显存带宽是指显示芯片与显存之间的数据传输速率,它以字节/秒为单位,计算公式为:显存带宽=工作频率×显存位宽/8bit。目前大多中低端的显卡都能提供6.4GB/s至60GB/s的显存带宽,而对于中高端的显卡产品则提供超过60GB/s的显存带宽。

3.4 显存类型

EDORAM、MDRAM、SDRAM、SGRAM、VRAM、WRAM、GDDR

显示芯片性能的日益提高,其数据处理能力变得更强,使得显存数据传输量和传输率的要求变得更高,显卡对显存的要求也更高,现时大部分显卡使用的是GDDR2至5代规格的显存。虽然各个类型的显存因厂家与规格而不同,而GDDR5规格的显存频率、位宽与带宽都普遍比其他规格高,GDDR5为现时最高规格。

4 应用 编辑本段

4.1 大小选择

目前工作站显卡所用的显存容量一般都在64M、128M、256M甚至更大。

对于选择多大的显存容量合适,这取决于多种因素,比如应用的环境和硬件的相互制约关系,但通常来讲可以参考下面公式:

显存容量=显示分辨率×颜色位数/8bit。显存容量显存容量

比如现在显示分辨率基本都是1024x768,颜色位数为32bit,那么需要的显存容量=1024x768x32bit/8bit=3145728 byte,可是这针对是2D显卡(普通平面),如果是3D加速卡,那么需要的显存容量为1024x768x32bitx3/8bit=9437184byte=9.216MB,这是最低需求,而且还必须增加一定的容量作为纹理显示内存,否则当显示资源被完全占用时,计算机只有占用主内存作为纹理内存,这样的二次调用会导致显示性能下降,因此作为真正的3D加速卡显存容量一定大于9.216MB。目前工作站显卡显存都在64MB以上。比如2D绘图应用,即使在1600x1200的情况下,它也最多是1600x1200x32bit/8bit=7680000byte=7.5MB,如果是三维绘图比如3D Studio Max,那么容量需求是7.5x3=22.5MB,不过这是最低需求,因此32MB容量的显存是应付这类2D绘图或者娱乐的视频播放、普通三维设计。对于工作站而言,由于运行更大的软件,更大的运算,所以显存至少应该在64M以上。

4.2 速度选择

另外还需要补充一点的就是显存的速度。

早期的SDRAM显存速度很慢,后来出现的DDR显存逐渐成为主流。

在DDR两倍速度于SD显存的时候,面向高端显卡的DDR2显存横空出世,使得显存频率得以高于600MHz。

现在的显存用于低端的是DDR或者是DDR2,面向中高端的上DDR3,到06年,ATi的R580系列显卡使用的显存速度达到了1.8GHz!

显存速度也是显卡非常重要的一个参数。比如NV的GeForce6600。05年的6600标准版的显存是DDR,速度标准为500,而后来推出的DDR2版的6600,在显示核心(GPU)没有任何改变的情况下,显存变为800Mhz,性能却提高了40%!所以显存的速度也是非常重要的!

5 GDDR5显存 编辑本段

5.1 技术发展

显存容量显存容量在显卡技术领域,随着GPU性能的逐步提升,显卡对显存带宽的需求也与日俱增,而GDDR3显存已经无法满足下一代GPU的需求。为此芯片厂商推出了GDDR4显存颗粒,遗憾的是,相比GDDR3而言,GDDR4并没有彻底解决功耗和带宽问题,而且成本过于昂贵。芯片厂商则直接跳过了GDDR4,转而发展GDDR5显存颗粒,与GDDR3显存颗粒相比,GDDR5具有哪些特点呢?

5.2 突破瓶颈

带宽提升三倍

显存带宽决定了GPU与显存之间的数据传输速率,通常来说显存带宽越大,显卡性能就越出色,但要提高显存带宽,最直接有效的办法是提升显存位宽。遗憾的是,显存位宽并不是由芯片技术决定,而是取决于板卡设计,它与显存颗粒位宽和显存频率息息相关,在这点上,尽管GDDR3显存颗粒是时下的主流,但面对采用RV770核心的新一代GPU(VPU)构架,如Radeon HD4870,GDDR3显存颗粒已经呈现出了疲态,此时GDDR4或GDDR5显存颗粒就是最好的补充。不过由于GDDR4显存颗粒的频率提升不够显著,加之颗粒参数上的限制,有时会造成性能缺陷,而GDDR5显存颗粒却拥有足够大的带宽。

根据公式:显存带宽=(显存频率×显存位宽)/8。我们知道,如果要提高显存带宽,可以增加显存工作频率或显存位宽,而要改变显存位宽,最常见的办法就是增加显存颗粒数,这样势必提升显卡成本,而且还会增加显存的功耗。对于显存颗粒厂商而言,提升显存频率以提升显存带宽成了一条主攻路线,而显存频率的大小,又主要取决于显存颗粒的速度,GDDR5显存颗粒就是通过采用最新的技术工艺,使得显存芯片拥有更高的频率。

据资料显示,目前主流显卡采用了GDDR3显存颗粒,其每个引脚的数据传输率仅为1.6Gbps,单显存颗粒(32bit)也只能提供6.4GB/s带宽,而现在高速的GDDR5显存颗粒每个引脚的数据传输率可以达到5Gbps(即传输频率为5GHz,时钟频率为2.5GHz)或6Gbps,单显存颗粒(32bit)可以提供20GB/s带宽(即5GHz×32bit/8),如果搭配同数量、同显存位宽的显存颗粒,GDDR5显存颗粒提供的总带宽是GDDR3的3倍以上,譬如显卡的显存位宽为256bit,其数据传输率可以达到160GB/s,如果使用主流512bit配置设计,显卡数据吞吐可以达到惊人的320GB/s带宽。

小贴士:显存的引脚是指显存颗粒与内存PCB上的金属触点,显存芯片在封装后,显存与PCB需要通过金属触点进行信号传输,对于GDDR5显存而言,由于其采用了FBGA封装形式,为此柱状焊点按阵列形式分布在封装下面,并向芯片中心方向引出,其优点是有效地缩短了信号的传导距离,信号传输线的长度仅是TSOP封装(薄型小尺寸封装)的1/4,降低了抗干扰,也提升了性能,而“每引脚数据传输率”指的是每个金属触点所能提供的数据传输速度。

5.3 高效节能

功耗降低20℅

毫无疑问,相比GDDR3或GDDR4显存颗粒而言,GDDR5显存颗粒最大的亮点就是拥有更高的带宽,但显存频率的提升,也增加了芯片功耗,这会制约显卡性能的发挥。从技术标准来看,GDDR3显存颗粒的工作电压为1.8V,而GDDR4及GDDR5的工作电压都为1.5V,不过GDDR4并没有解决高功耗、高发热的问题,导致GDDR4显存颗粒的功耗反而比GDDR3高,这也是造成GDDR4显存颗粒的频率停留在1GHz~1.4GHz的主要原因。

相比GDDR4显存颗粒而言,GDDR5显存颗粒不单单将数据传输率提升了一倍,它还拥有更低的工作功耗。据了解,得益于优秀的电源管理技术,GDDR5显存颗粒会比 GDDR4省电20℅左右。譬如在空闲时自动降低显存的频率,功耗和发热量得到了很好的控制。而且在制程技术上,GDDR4显存颗粒采用的是80nm甚至90nm工艺制程,而GDDR5显存颗粒将采用66nm或55nm工艺制程,并采用170FBGA封装方式(是指采用了FBGA封装,并拥有170个球状触点),从而大大减小了芯片体积,芯片密度也可以做到更高,为此进一步降低了显存芯片的发热量。

对于显卡来说,基于应用需求的不同,涉及大量图形数据处理的GPU需要更快的显存支持,GPU自身也因此具有惊人的内存位宽,而面对下一代512bit位宽的显卡,GPU必须与频率更高的显存芯片配合,如果让频率相对较低的GDDR3显存颗粒去搭配Radeon HD4870显卡,显然无法发挥GPU的性能潜力,而使用55nm工艺制程的GDDR5显存颗粒就正好门当户对。这不仅仅可以实现低功耗,还能让显卡内部的协调更有效,从而最大限度地发挥显卡性能。

5.4 新技术

让显卡更稳定

正是由于GDDR5显存颗粒具有低功耗、高性能的特点,为此还有利于提高显卡电路设计的稳定性,显卡在实际应用中,可以获得更高的数据安全性,因而相比GDDR4的误纠正技术,该技术可以检测显存在读取和写入数据的错误,而且可实现同步检测并修正。譬如发现有数据读写有错误或数据传输不同步,错误纠正技术能够实现快速重新发送,以确保显卡能够稳定运行。

GDDR5显存颗粒还加入了一项“适应性界面计时”技术,该技术可以根据系统的实际需要,自动调节显存可伸缩的字节。此举可以让数据传输更加高效,同时还具有节能的效果,确保显卡的稳定运行。对于显卡厂商而言,利用“适应性界面计时”技术还可以减少PCB板的成本,让显卡更加廉价。GDDR5显存颗粒还有一项“DEO(数据眼优化)”技术,它支持时间延迟调整,允许厂商自行设定延迟,让显卡可以满足不同用户的应用需求。此外,“数据眼优化”技术还能对界面驱动、工作电压等进行优化和调节,不仅可以提升显卡性能,也让显卡PCB板和电路设计更加稳定。

5.5 高显存带宽

引爆PCI-E 2.0

对于高端显卡来说,PCI-E 2.0显卡搭配GDDR5显存颗粒是十分必要的,PCI-E 2.0接口带宽达到了单向8GB/s(双向16GB/s),充足的接口带宽对于高性能GPU会有明显的性能提升,但如果只搭配GDDR4显存颗粒,显存带宽低了不少,也就意味着显卡性能大打折扣,从实际应用角度来看,随着GPU性能越来越强,以及SLI、Quad SLI双模式甚至多核心显卡的推出,GDDR5显存颗粒与PCI-E 2.0规格的双双联合,会让显卡GPU的3D性能得到充分发挥。而且也降低了显卡成本,让主流显卡更具竞争力。

5.6 GDDR5市场趋势

与GDDR4相比,GDDR5拥有高性能、低功耗、稳定性更好等优势,它更能满足3D图形带宽的发展需求。我们可以断定,尽管GDDR4早已在市场上开始应用,但它只是过渡性的临时方案,GDDR5才代表未来的主流趋势。据了解,在2007年的高端图形市场中,GDDR4仅占了10%的市场,2008年GDDR4市场的成长幅度较快,但仍无法在一年之内成为主导。而在2008年下半年,奇梦达、三星、现代等厂商将会开始大规模量产GDDR5芯片,而且将占显卡市场7%的份额,预计到2009年,GDDR5将会超过20%的市场占有率,2010年时将成为主流,此时GDDR4的市场将被彻底挤占。NVIDIA、ATI及Intel已经开始准备在下一代显卡,如Radeon HD4870上采用GDDR5显存。

总的来看,GDDR5 显存颗粒可大幅提升绘图硬件效能,同时为软件设计师带来更大空间,让游戏及绘图世界能更加真实,减少因显存频率、带宽不足而造成的瓶颈。在显存容量上,目前主流显卡为512MB、768MB,尽管相比此前的256MB有突破性提升,但依然无法满足双核CPU在大型程序下的数据交换需要。采用GDDR5显存后,显卡显存的容量起点将是512MB,这让入门级显卡也拥有了出色的3D性能,而且届时1GB显存容量将成为市场主流。为了满足市场需求,预计到2009年,显存芯片商将会推出更高容量的显存颗粒。到那时候,GDDR5显存将全面统领显卡市场。    

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多