在介绍KMP算法之前,先介绍一下BF算法。 一.BF算法 BF算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串P的第一个字符进行匹配,若相等,则继续比较S的第二个字符和P的第二个字符;若不相等,则比较S的第二个字符和P的第一个字符,依次比较下去,直到得出最后的匹配结果。 举例说明: S: ababcababa P: ababa BF算法匹配的步骤如下 i=0 i=1 i=2 i=3 i=4 第一趟:ababcababa 第二趟:ababcababa 第三趟:ababcababa 第四趟:ababcababa 第五趟:ababcababa ababa ababa ababa ababa ababa j=0 j=1 j=2 j=3 j=4(i和j回溯)
i=1 i=2 i=3 i=4 i=3 第六趟:ababcababa 第七趟:ababcababa 第八趟:ababcababa 第九趟:ababcababa 第十趟:ababcababa ababa ababa ababa ababa ababa j=0 j=0 j=1 j=2(i和j回溯) j=0
i=4 i=5 i=6 i=7 i=8 第十一趟:ababcababa 第十二趟:ababcababa 第十三趟:ababcababa 第十四趟:ababcababa 第十五趟:ababcababa ababa ababa ababa ababa ababa j=0 j=0 j=1 j=2 j=3
i=9 第十六趟:ababcababa ababa j=4(匹配成功) 代码实现: 其实在上面的匹配过程中,有很多比较是多余的。在第五趟匹配失败的时候,在第六趟,i可以保持不变,j值为2。因为在前面匹配的过程中,对于串S,已知s0s1s2s3=p0p1p2p3,又因为p0!=p1!,所以第六趟的匹配是多余的。又由于p0==p2,p1==p3,所以第七趟和第八趟的匹配也是多余的。在KMP算法中就省略了这些多余的匹配。 二.KMP算法 KMP算法之所以叫做KMP算法是因为这个算法是由三个人共同提出来的,就取三个人名字的首字母作为该算法的名字。其实KMP算法与BF算法的区别就在于KMP算法巧妙的消除了指针i的回溯问题,只需确定下次匹配j的位置即可,使得问题的复杂度由O(mn)下降到O(m+n)。 在KMP算法中,为了确定在匹配不成功时,下次匹配时j的位置,引入了next[]数组,next[j]的值表示P[0...j-1]中最长后缀的长度等于相同字符序列的前缀。 对于next[]数组的定义如下: 1)next[j]=-1 j=0 2)next[j]=max k:0<k<j P[0...k-1]=P[j-k,j-1] 3)next[j]=0 其他 如: P a b a b a j 0 1 2 3 4 next -1 0 0 1 2 即next[j]=k>0时,表示P[0...k-1]=P[j-k,j-1] 因此KMP算法的思想就是:在匹配过程称,若发生不匹配的情况,如果next[j]>=0,则目标串的指针i不变,将模式串的指针j移动到next[j]的位置继续进行匹配;若next[j]=-1,则将i右移1位,并将j置0,继续进行比较。 代码实现如下:
因此KMP算法的关键在于求算next[]数组的值,即求算模式串每个位置处的最长后缀与前缀相同的长度, 而求算next[]数组的值有两种思路,第一种思路是用递推的思想去求算,还有一种就是直接去求解。
1.按照递推的思想: 根据定义next[0]=-1,假设next[j]=k, 即P[0...k-1]==P[j-k,j-1] 1)若P[j]==P[k],则有P[0..k]==P[j-k,j],很显然,next[j+1]=next[j]+1=k+1; 2)若P[j]!=P[k],则可以把其看做模式匹配的问题,即匹配失败的时候,k值如何移动,显然k=next[k]。 因此可以这样去实现:
2.直接求解方法
|
|