分享

stm32上最方便的定时器Systick[操作寄存器+库函数] -Changing's Blog

 杭州文轩 2014-11-27
Systick 是stm32上一个用处很多的内设,所有基于arm-cortex m3 的芯片都有这个定时器,所以考虑到平台的可移植性时,可以多使用Systick。
Systick 是一个24位数据宽度的倒计数定时器,其计数范围只能到 1677215(2^24),当计数到0时会从RELOAD寄存器 中自动重装定时初值。只要不把SysTick的控制及状态寄存器中的使能位清除,计数器就不会停止。
SysTick 可以产生中断、设置中断优先级,有专门的中断处理函数SysTick_Handler().库函数作为ST公司自己的推出的框架, 在中断这方面做了更为细致的处理。
库函数包含的头文件是 stm32f10x.h  这个文件中 列出了完整的stm32中断向量表(截取部分):
/******  Cortex-M3 Processor Exceptions Numbers ***************************************************/
  NonMaskableInt_IRQn         = -14,    /*!< 2 Non Maskable Interrupt                             */
  MemoryManagement_IRQn       = -12,    /*!< 4 Cortex-M3 Memory Management Interrupt              */
  BusFault_IRQn               = -11,    /*!< 5 Cortex-M3 Bus Fault Interrupt                      */
  UsageFault_IRQn             = -10,    /*!< 6 Cortex-M3 Usage Fault Interrupt                    */
  SVCall_IRQn                 = -5,     /*!< 11 Cortex-M3 SV Call Interrupt                       */
  DebugMonitor_IRQn           = -4,     /*!< 12 Cortex-M3 Debug Monitor Interrupt                 */
  PendSV_IRQn                 = -2,     /*!< 14 Cortex-M3 Pend SV Interrupt                       */
  SysTick_IRQn                = -1,     /*!< 15 Cortex-M3 System Tick Interrupt                   */

/******  STM32 specific Interrupt Numbers *********************************************************/
  WWDG_IRQn                   = 0,      /*!< Window WatchDog Interrupt                            */
  PVD_IRQn                    = 1,      /*!< PVD through EXTI Line detection Interrupt            */
  TAMPER_IRQn                 = 2,      /*!< Tamper Interrupt                                     */
  RTC_IRQn                    = 3,      /*!< RTC global Interrupt                                 */
  FLASH_IRQn                  = 4,      /*!< FLASH global Interrupt                               */
  RCC_IRQn                    = 5,      /*!< RCC global Interrupt                                 */
  EXTI0_IRQn                  = 6,      /*!< EXTI Line0 Interrupt                                 */
  EXTI1_IRQn                  = 7,      /*!< EXTI Line1 Interrupt                                 */
  EXTI2_IRQn                  = 8,      /*!< EXTI Line2 Interrupt                                 */
  EXTI3_IRQn                  = 9,      /*!< EXTI Line3 Interrupt                                 */
  EXTI4_IRQn                  = 10,     /*!< EXTI Line4 Interrupt                                 */
  DMA1_Channel1_IRQn          = 11,     /*!< DMA1 Channel 1 global Interrupt                      */
  DMA1_Channel2_IRQn          = 12,     /*!< DMA1 Channel 2 global Interrupt                      */
  DMA1_Channel3_IRQn          = 13,     /*!< DMA1 Channel 3 global Interrupt                      */
  DMA1_Channel4_IRQn          = 14,     /*!< DMA1 Channel 4 global Interrupt                      */
  DMA1_Channel5_IRQn          = 15,     /*!< DMA1 Channel 5 global Interrupt                      */
  DMA1_Channel6_IRQn          = 16,     /*!< DMA1 Channel 6 global Interrupt                      */
  DMA1_Channel7_IRQn          = 17,     /*!< DMA1 Channel 7 global Interrupt                      */
其中就包含了对系统级中断的处理,有SysTick的中断定义。
在 库函数的Cmsis\core_cm3.h文件中的中断配置函数也区分了系统中断 和 其他中断的区分处理 :
static __INLINE void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
  if(IRQn < 0) {
    SCB->SHP[((uint32_t)(IRQn) & 0xF)-4] = ((priority << (8 - __NVIC_PRIO_BITS)) & 0xff); } /* set Priority for Cortex-M3 System Interrupts */
  else {
    NVIC->IP[(uint32_t)(IRQn)] = ((priority << (8 - __NVIC_PRIO_BITS)) & 0xff);    }        /* set Priority for device specific Interrupts  */
}
其中 SysTick_Config()函数也在这个文件中:
static __INLINE uint32_t SysTick_Config(uint32_t ticks)
{ 
  if (ticks > SysTick_LOAD_RELOAD_Msk)  return (1);            /* Reload value impossible */
                                                               
  SysTick->LOAD  = (ticks & SysTick_LOAD_RELOAD_Msk) - 1;      /* set reload register */
  NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1);  /* set Priority for Cortex-M0 System Interrupts */
  SysTick->VAL   = 0;                                          /* Load the SysTick Counter Value */
  SysTick->CTRL  = SysTick_CTRL_CLKSOURCE_Msk | 
                   SysTick_CTRL_TICKINT_Msk   | 
                   SysTick_CTRL_ENABLE_Msk;                    /* Enable SysTick IRQ and SysTick Timer */
  return (0);                                                  /* Function successful */
}
所以库函数中可以将SysTick作为一个中断操作。
但是直接操作寄存器,包含的头文件是 stm32f10x_lib.h ,中断向量表在stm32f10x_nvic.h 中(截取部分):
/* IRQ Channels --------------------------------------------------------------*/
#define WWDG_IRQChannel              ((u8)0x00)  /* Window WatchDog Interrupt */
#define PVD_IRQChannel               ((u8)0x01)  /* PVD through EXTI Line detection Interrupt */
#define TAMPER_IRQChannel            ((u8)0x02)  /* Tamper Interrupt */
#define RTC_IRQChannel               ((u8)0x03)  /* RTC global Interrupt */
#define FLASH_IRQChannel             ((u8)0x04)  /* FLASH global Interrupt */
#define RCC_IRQChannel               ((u8)0x05)  /* RCC global Interrupt */
#define EXTI0_IRQChannel             ((u8)0x06)  /* EXTI Line0 Interrupt */
#define EXTI1_IRQChannel             ((u8)0x07)  /* EXTI Line1 Interrupt */
#define EXTI2_IRQChannel             ((u8)0x08)  /* EXTI Line2 Interrupt */
#define EXTI3_IRQChannel             ((u8)0x09)  /* EXTI Line3 Interrupt */
#define EXTI4_IRQChannel             ((u8)0x0A)  /* EXTI Line4 Interrupt */
并没有对systick做定义,所以直接操作寄存器,需要通过查询标志位的方式,查看Systick的状态。
本例将实现用Systick 产生一个100ms的定时器,让GPIO_Pin_5管脚led灯闪烁。

操作寄存器
在stm32f10x_map.h中,包含了对SysTick的结构体定义:
typedef struct
{
  vu32 CTRL;
  vu32 LOAD;
  vu32 VAL;
  vuc32 CALIB;
} SysTick_TypeDef;
手册上对SysTick的介绍并不详细,各个寄存器的各位定义如下:
systick.png
systick的时钟来自外部时钟,经倍频器后再8分频作为时钟信号。
代码如下:    (sys.h 代码参照 stm32 直接操作寄存器开发环境配置
#include <stm32f10x_lib.h> 
#include "system.h"		

//LED  按键端口定义
#define LED0 PAout(4)// PA4


void Gpio_Init(void);//初始化		   

void SysTick_Delay(u32 time);

int main(void)
{	
	u32 temp;			  
	Rcc_Init(9); //系统时钟设置
	Gpio_Init();		  	 //初始化与LED连接的硬件接口

	SysTick_Delay(100000);

	while(1)
	{	
		do
		{
			temp=SysTick->CTRL;
		}while(temp&0x01&&!(temp&(1<<16)));  //查询COUNTFLAG标志位,等待时间到达 
		  
		LED0 = !LED0;
	}
}

void SysTick_Delay(u32 us)
{		
	    	 
	u8 us_radix=72/8;//us延时倍乘数  SYSTICk的时钟固定为HCLK时钟的1/8,这里使用系统时钟72MHz 
	SysTick->CTRL&=0xfffffffb;//bit2清空,选择外部时钟  HCLK/8
	SysTick->LOAD=us*us_radix; //时间加载	  		 
	SysTick->VAL=0x00;        //清空计数器
	SysTick->CTRL=0x01;      //开始倒数  	 
	
	//SysTick->CTRL=0x00;       //关闭计数器
	//SysTick->VAL =0X00;       //清空计数器	
}


void Gpio_Init(void)
{
	RCC->APB2ENR|=1<<2;    //使能PORTA时钟	   	 
	   	 
	GPIOA->CRL&=0XFFF0FFFF; 
	GPIOA->CRL|=0X00030000;//PA4 推挽输出   	 
    GPIOA->ODR|=1<<4;      //PA4 输出高
	  
}
库函数操作
在旧版本的库函数中,有较多的可配置内容。但是在固件库V3.5中,对Systick寄存器的只有一个函数: 
  SysTick_Config(uint32_t ticks);    //注意这是一个24位计数器,超出24位则返回配置错误,返回1
该函数设置了自动重载入计数器(LOAD)的值,SysTick IRQ的优先级,复位了计数器(VAL)的值,开始计数并打开SysTick IRQ中断。SysTick时钟默认使用系统时钟(72MHz)。  

在标准外设库中移除了SysTick的驱动,因此用户必须调用CMSIS定义的函数。 驱动已经包含在了Cmsis文件夹中;

但是查看源代码可以知道,在标准外设库(Libraries/src)中有一个misc.c文件,其中提供了一个修改SysTick默认时钟的函数:

/**
  * @brief  Configures the SysTick clock source.
  * @param  SysTick_CLKSource: specifies the SysTick clock source.
  *   This parameter can be one of the following values:
  *     @arg SysTick_CLKSource_HCLK_Div8: AHB clock divided by 8 selected as SysTick clock source.
  *     @arg SysTick_CLKSource_HCLK: AHB clock selected as SysTick clock source.
  * @retval None
  */
void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource)
{
  /* Check the parameters */
  assert_param(IS_SYSTICK_CLK_SOURCE(SysTick_CLKSource));
  if (SysTick_CLKSource == SysTick_CLKSource_HCLK)
  {
    SysTick->CTRL |= SysTick_CLKSource_HCLK;
  }
  else
  {
    SysTick->CTRL &= SysTick_CLKSource_HCLK_Div8;
  }
}

可以选择systick 的时钟是否是HCLK(AHB)时钟 或者是HCLK的八分频时钟。

库函数操作代码如下:



main.c:

#include "stm32f10x.h"

void RCC_Configuration(void);
void GPIO_Configuration(void);

int main(void)
{

  	RCC_Configuration();
  	GPIO_Configuration();

	if(SysTick_Config(1*7200000))	 //配置错误返回1,max 16777216   默认72Mhz 时钟 ,100ms延时
	{							
		GPIO_SetBits(GPIOA , GPIO_Pin_4); 	//错误处理 								
	}
	while(1);
	
}


  
void GPIO_Configuration(void)
{
  	GPIO_InitTypeDef GPIO_InitStructure;

  	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4|GPIO_Pin_5;
  	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;			
  	GPIO_Init(GPIOA , &GPIO_InitStructure); 
}


void RCC_Configuration(void)
{
	/* 定义枚举类型变量 HSEStartUpStatus */
	ErrorStatus HSEStartUpStatus;

  	/* 复位系统时钟设置*/
  	RCC_DeInit();
  	/* 开启HSE*/
  	RCC_HSEConfig(RCC_HSE_ON);
  	/* 等待HSE起振并稳定*/
  	HSEStartUpStatus = RCC_WaitForHSEStartUp();
	/* 判断HSE起是否振成功,是则进入if()内部 */
  	if(HSEStartUpStatus == SUCCESS)
  	{
    	/* 选择HCLK(AHB)时钟源为SYSCLK 1分频 */
    	RCC_HCLKConfig(RCC_SYSCLK_Div1); 
    	/* 选择PCLK2时钟源为 HCLK(AHB) 1分频 */
    	RCC_PCLK2Config(RCC_HCLK_Div1); 
    	/* 选择PCLK1时钟源为 HCLK(AHB) 2分频 */
    	RCC_PCLK1Config(RCC_HCLK_Div2);
    	/* 设置FLASH延时周期数为2 */
    	//FLASH_SetLatency(FLASH_Latency_2);
    	/* 使能FLASH预取缓存 */
    	//  FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
    	/* 选择锁相环(PLL)时钟源为HSE 1分频,倍频数为9,则PLL输出频率为 8MHz * 9 = 72MHz */
    	RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
    	/* 使能PLL */ 
    	RCC_PLLCmd(ENABLE);
    	/* 等待PLL输出稳定 */
    	while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);
    	/* 选择SYSCLK时钟源为PLL */
    	RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
    	/* 等待PLL成为SYSCLK时钟源 */
    	while(RCC_GetSYSCLKSource() != 0x08);
  	} 
  	/* 打开APB2总线上的GPIOA时钟*/
  	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);

	
}
 stm3210x_it.c  //中断处理函数

#include "stm32f10x_it.h"

void SysTick_Handler(void)
{
	GPIO_WriteBit(GPIOA , GPIO_Pin_5,(BitAction)(1-GPIO_ReadOutputDataBit(GPIOA,GPIO_Pin_5)));	//翻转GPIO_Pin_5的电平

}   

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多