分享

编程思想之多线程与多进程(4):C 中的多线程 - 博客 - 伯乐在线

 mzsm 2015-10-26
原文出处: luoweifu   欢迎分享原创到伯乐头条

编程思想之多线程与多进程(1)——以操作系统的角度述说线程与进程》一文详细讲述了线程、进程的关系及在操作系统中的表现,《编程思想之多线程与多进程(2)——线程优先级与线程安全》一文讲了线程安全(各种同步锁)和优先级,这是多线程学习必须了解的基础。本文将接着讲一下C++中多线程程序的开发.这里主要讲Windows平台线程的用法,创建线程要调用windows API的CreateThread方法。

 

创建线程

在Windows平台,Windows API提供了对多线程的支持。前面进程和线程的概念中我们提到,一个程序至少有一个线程,这个线程称为主线程(main thread),如果我们不显示地创建线程,那我们产的程序就是只有主线程的间线程程序。
下面,我们看看Windows中线程相关的操作和方法:

CreateThread与CloseHandle

CreateThread用于创建一个线程,其函数原型如下:

1
2
3
4
5
6
7
8
HANDLE WINAPI CreateThread(
    LPSECURITY_ATTRIBUTES   lpThreadAttributes, //线程安全相关的属性,常置为NULL
    SIZE_T                  dwStackSize,        //新线程的初始化栈在大小,可设置为0
    LPTHREAD_START_ROUTINE  lpStartAddress,     //被线程执行的回调函数,也称为线程函数
    LPVOID                  lpParameter,        //传入线程函数的参数,不需传递参数时为NULL
    DWORD                   dwCreationFlags,    //控制线程创建的标志
    LPDWORD                 lpThreadId          //传出参数,用于获得线程ID,如果为NULL则不返回线程ID
);

**说明:**lpThreadAttributes:指向SECURITY_ATTRIBUTES结构的指针,决定返回的句柄是否可被子进程继承,如果为NULL则表示返回的句柄不能被子进程继承。

dwStackSize :线程栈的初始化大小,字节单位。系统分配这个值对

lpStartAddress:指向一个函数指针,该函数将被线程调用执行。因此该函数也被称为线程函数(ThreadProc),是线程执行的起始地址,线程函数是一个回调函数,由操作系统在线程中调用。线程函数的原型如下:

1
DWORD WINAPI ThreadProc(LPVOID lpParameter); //lpParameter是传入的参数,是一个空指针

lpParameter:传入线程函数(ThreadProc)的参数,不需传递参数时为NULL

dwCreationFlags:控制线程创建的标志,有三个类型,0:线程创建后立即执行线程;CREATE_SUSPENDED:线程创建后进入就绪状态,直到线程被唤醒时才调用;STACK_SIZE_PARAM_IS_A_RESERVATION:dwStackSize 参数指定线程初始化栈的大小,如果STACK_SIZE_PARAM_IS_A_RESERVATION标志未指定,dwStackSize将会设为系统预留的值。

返回值:如果线程创建成功,则返回这个新线程的句柄,否则返回NULL。如果线程创建失败,可通过GetLastError函数获得错误信息。

1
BOOL WINAPI CloseHandle(HANDLE hObject); //关闭一个被打开的对象句柄

可用这个函数关闭创建的线程句柄,如果函数执行成功则返回true(非0),如果失败则返回false(0),如果执行失败可调用GetLastError.函数获得错误信息。

【Demo1】:创建一个最简单的线程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include 'stdafx.h'
#include <windows.h>
#include <iostream>
using namespace std;
//线程函数
DWORD WINAPI ThreadProc(LPVOID lpParameter)
{
    for (int i = 0; i < 5; ++ i)
    {
        cout << '子线程:i = ' << i << endl;
        Sleep(100);
    }
    return 0L;
}
int main()
{
    //创建一个线程
    HANDLE thread = CreateThread(NULL, 0, ThreadProc, NULL, 0, NULL);
    //关闭线程
    CloseHandle(thread);
    //主线程的执行路径
    for (int i = 0; i < 5; ++ i)
    {
        cout << '主线程:i = ' << i << endl;
        Sleep(100);
    }
    return 0;
}

结果如下:

1
2
3
4
5
6
7
8
9
10
主线程:i = 0
子线程:i = 0
主线程:i = 1
子线程:i = 1
子线程:i = 2
主线程:i = 2
子线程:i = 3
主线程:i = 3
子线程:i = 4
主线程:i = 4

【Demo2】:在线程函数中传入参数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include 'stdafx.h'
#include <windows.h>
#include <iostream>
using namespace std;
#define NAME_LINE   40
//定义线程函数传入参数的结构体
typedef struct __THREAD_DATA
{
    int nMaxNum;
    char strThreadName[NAME_LINE];
    __THREAD_DATA() : nMaxNum(0)
    {
        memset(strThreadName, 0, NAME_LINE * sizeof(char));
    }
}THREAD_DATA;
//线程函数
DWORD WINAPI ThreadProc(LPVOID lpParameter)
{
    THREAD_DATA* pThreadData = (THREAD_DATA*)lpParameter;
    for (int i = 0; i < pThreadData->nMaxNum; ++ i)
    {
        cout << pThreadData->strThreadName << ' --- ' << i << endl;
        Sleep(100);
    }
    return 0L;
}
int main()
{
    //初始化线程数据
    THREAD_DATA threadData1, threadData2;
    threadData1.nMaxNum = 5;
    strcpy(threadData1.strThreadName, '线程1');
    threadData2.nMaxNum = 10;
    strcpy(threadData2.strThreadName, '线程2');
//创建第一个子线程
    HANDLE hThread1 = CreateThread(NULL, 0, ThreadProc, &threadData1, 0, NULL);
    //创建第二个子线程
    HANDLE hThread2 = CreateThread(NULL, 0, ThreadProc, &threadData2, 0, NULL);
    //关闭线程
    CloseHandle(hThread1);
    CloseHandle(hThread2);
    //主线程的执行路径
    for (int i = 0; i < 5; ++ i)
    {
        cout << '主线程 === ' << i << endl;
        Sleep(100);
    }
    system('pause');
    return 0;
}

结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
主线程 === 线程1 0
0
线程2 0
线程1 1
主线程 === 1
线程2 1
主线程 === 2
线程1 2
线程2 2
主线程 === 3
线程2 3
线程1 3
主线程 === 4
线程2 4
线程1 4
线程2 5
请按任意键继续… 线程2 6
线程2 7
线程2 8
线程2 9

CreateMutex、WaitForSingleObject、ReleaseMutex

从【Demo2】中可以看出,虽然创建的子线程都正常执行起来了,但输出的结果并不是我们预期的效果。我们预期的效果是每输出一条语句后自动换行,但结果却并非都是这样。这是因为在线程执行时没有做同步处理,比如第一行的输出,主线程输出“主线程 ===”后时间片已用完,这时轮到子线程1输出,在子线程输出“线程1 —”后时间片也用完了,这时又轮到主线程执行输出“0”,之后又轮到子线程1输出“0”。于是就出现了“主线程 === 线程1 — 0 0”的结果。

主线程:cout << “主线程 === ” << i << endl;
子线程:cout << pThreadData->strThreadName << ” — ” << i << endl;

为避免出现这种情况,我们对线程做一些简单的同步处理,这里我们用互斥量(Mutex),关于互斥量(Mutex)的概念,请看《编程思想之多线程与多进程(2)——线程优先级与线程安全》一文;更多C++线程同步的处理,请看下一节。

在使用互斥量进行线程同步时会用到以下几个函数:

1
2
3
4
5
HANDLE WINAPI CreateMutex(
    LPSECURITY_ATTRIBUTES lpMutexAttributes,        //线程安全相关的属性,常置为NULL
    BOOL                  bInitialOwner,            //创建Mutex时的当前线程是否拥有Mutex的所有权
    LPCTSTR               lpName                    //Mutex的名称
);

**说明:**lpMutexAttributes也是表示安全的结构,与CreateThread中的lpThreadAttributes功能相同,表示决定返回的句柄是否可被子进程继承,如果为NULL则表示返回的句柄不能被子进程继承。bInitialOwner表示创建Mutex时的当前线程是否拥有Mutex的所有权,若为TRUE则指定为当前的创建线程为Mutex对象的所有者,其它线程访问需要先ReleaseMutex。lpName为Mutex的名称。

1
2
3
4
DWORD WINAPI WaitForSingleObject(
    HANDLE hHandle,                             //要获取的锁的句柄
    DWORD  dwMilliseconds                           //超时间隔
);

**说明:**WaitForSingleObject的作用是等待一个指定的对象(如Mutex对象),直到该对象处于非占用的状态(如Mutex对象被释放)或超出设定的时间间隔。除此之外,还有一个与它类似的函数WaitForMultipleObjects,它的作用是等待一个或所有指定的对象,直到所有的对象处于非占用的状态,或超出设定的时间间隔。

hHandle:要等待的指定对象的句柄。dwMilliseconds:超时的间隔,以毫秒为单位;如果dwMilliseconds为非0,则等待直到dwMilliseconds时间间隔用完或对象变为非占用的状态,如果dwMilliseconds 为INFINITE则表示无限等待,直到等待的对象处于非占用的状态。

1
BOOL WINAPI ReleaseMutex(HANDLE hMutex);

说明:释放所拥有的互斥量锁对象,hMutex为释放的互斥量的句柄。

【Demo3】:线程同步

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#include 'stdafx.h'
#include <windows.h>
#include <iostream>
#define NAME_LINE   40
//定义线程函数传入参数的结构体
typedef struct __THREAD_DATA
{
    int nMaxNum;
    char strThreadName[NAME_LINE];
    __THREAD_DATA() : nMaxNum(0)
    {
        memset(strThreadName, 0, NAME_LINE * sizeof(char));
    }
}THREAD_DATA;
HANDLE g_hMutex = NULL;     //互斥量
//线程函数
DWORD WINAPI ThreadProc(LPVOID lpParameter)
{
    THREAD_DATA* pThreadData = (THREAD_DATA*)lpParameter;
    for (int i = 0; i < pThreadData->nMaxNum; ++ i)
    {
        //请求获得一个互斥量锁
        WaitForSingleObject(g_hMutex, INFINITE);
        cout << pThreadData->strThreadName << ' --- ' << i << endl;
        Sleep(100);
        //释放互斥量锁
        ReleaseMutex(g_hMutex);
    }
    return 0L;
}
int main()
{
    //创建一个互斥量
    g_hMutex = CreateMutex(NULL, FALSE, NULL);
    //初始化线程数据
    THREAD_DATA threadData1, threadData2;
    threadData1.nMaxNum = 5;
    strcpy(threadData1.strThreadName, '线程1');
    threadData2.nMaxNum = 10;
    strcpy(threadData2.strThreadName, '线程2');
    //创建第一个子线程
    HANDLE hThread1 = CreateThread(NULL, 0, ThreadProc, &threadData1, 0, NULL);
    //创建第二个子线程
    HANDLE hThread2 = CreateThread(NULL, 0, ThreadProc, &threadData2, 0, NULL);
    //关闭线程
    CloseHandle(hThread1);
    CloseHandle(hThread2);
    //主线程的执行路径
    for (int i = 0; i < 5; ++ i)
    {
        //请求获得一个互斥量锁
        WaitForSingleObject(g_hMutex, INFINITE);
        cout << '主线程 === ' << i << endl;
        Sleep(100);
        //释放互斥量锁
        ReleaseMutex(g_hMutex);
    }
    system('pause');
    return 0;
}

结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
主线程 === 0
线程1 — 0
线程2 — 0
主线程 === 1
线程1 — 1
线程2 — 1
主线程 === 2
线程1 — 2
线程2 — 2
主线程 === 3
线程1 — 3
线程2 — 3
主线程 === 4
线程1 — 4
请按任意键继续… 线程2 — 4
线程2 — 5
线程2 — 6
线程2 — 7
线程2 — 8
线程2 — 9

为进一步理解线程同步的重要性和互斥量的使用方法,我们再来看一个例子。

买火车票是大家春节回家最为关注的事情,我们就简单模拟一下火车票的售票系统(为使程序简单,我们就抽出最简单的模型进行模拟):有500张从北京到赣州的火车票,在8个窗口同时出售,保证系统的稳定性和数据的原子性。

【Demo4】:模拟火车售票系统

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include 'stdafx.h'
#include <windows.h>
#include <iostream>
#include <strstream>
#include <string>
using namespace std;
#define NAME_LINE   40
//定义线程函数传入参数的结构体
typedef struct __TICKET
{
    int nCount;
    char strTicketName[NAME_LINE];
    __TICKET() : nCount(0)
    {
        memset(strTicketName, 0, NAME_LINE * sizeof(char));
    }
}TICKET;
typedef struct __THD_DATA
{
    TICKET* pTicket;
    char strThreadName[NAME_LINE];
    __THD_DATA() : pTicket(NULL)
    {
        memset(strThreadName, 0, NAME_LINE * sizeof(char));
    }
}THD_DATA;
 //基本类型数据转换成字符串
template<class T>
string convertToString(const T val)
{
    string s;
    std::strstream ss;
    ss << val;
    ss >> s;
    return s;
}
//售票程序
DWORD WINAPI SaleTicket(LPVOID lpParameter);

SaleTickets.cpp :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include 'stdafx.h'
#include <windows.h>
#include <iostream>
#include 'SaleTickets.h'
using namespace std;
extern HANDLE g_hMutex;
//售票程序
DWORD WINAPI SaleTicket(LPVOID lpParameter)
{
    THD_DATA* pThreadData = (THD_DATA*)lpParameter;
    TICKET* pSaleData = pThreadData->pTicket;
    while(pSaleData->nCount > 0)
    {
        //请求获得一个互斥量锁
        WaitForSingleObject(g_hMutex, INFINITE);
        if (pSaleData->nCount > 0)
        {
            cout << pThreadData->strThreadName << '出售第' << pSaleData->nCount -- << '的票,';
            if (pSaleData->nCount >= 0) {
                cout << '出票成功!剩余' << pSaleData->nCount << '张票.' << endl;
            } else {
                cout << '出票失败!该票已售完。' << endl;
            }
        }
        Sleep(10);
        //释放互斥量锁
        ReleaseMutex(g_hMutex);
    }
    return 0L;
}

测试程序:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
//售票系统
void Test2()
{
    //创建一个互斥量
    g_hMutex = CreateMutex(NULL, FALSE, NULL);
    //初始化火车票
    TICKET ticket;
    ticket.nCount = 100;
    strcpy(ticket.strTicketName, '北京-->赣州');
    const int THREAD_NUMM = 8;
    THD_DATA threadSale[THREAD_NUMM];
    HANDLE hThread[THREAD_NUMM];
    for(int i = 0; i < THREAD_NUMM; ++ i)
    {
        threadSale[i].pTicket = &ticket;
        string strThreadName = convertToString(i);
        strThreadName = '窗口' + strThreadName;
        strcpy(threadSale[i].strThreadName, strThreadName.c_str());
        //创建线程
        hThread[i] = CreateThread(NULL, NULL, SaleTicket, &threadSale[i], 0, NULL);
        //请求获得一个互斥量锁
        WaitForSingleObject(g_hMutex, INFINITE);
        cout << threadSale[i].strThreadName << '开始出售 ' << threadSale[i].pTicket->strTicketName << ' 的票...' << endl;
        //释放互斥量锁
        ReleaseMutex(g_hMutex);
        //关闭线程
        CloseHandle(hThread[i]);
    }
    system('pause');
}

结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
窗口0开始出售 北京–>赣州 的票…
窗口0出售第100的票,出票成功!剩余99张票.
窗口1开始出售 北京–>赣州 的票…
窗口1出售第99的票,出票成功!剩余98张票.
窗口0出售第98的票,出票成功!剩余97张票.
窗口2开始出售 北京–>赣州 的票…
窗口2出售第97的票,出票成功!剩余96张票.
窗口1出售第96的票,出票成功!剩余95张票.
窗口0出售第95的票,出票成功!剩余94张票.
窗口3开始出售 北京–>赣州 的票…
窗口3出售第94的票,出票成功!剩余93张票.
窗口2出售第93的票,出票成功!剩余92张票.
窗口1出售第92的票,出票成功!剩余91张票.
窗口0出售第91的票,出票成功!剩余90张票.
窗口4开始出售 北京–>赣州 的票…
窗口4出售第90的票,出票成功!剩余89张票.
窗口3出售第89的票,出票成功!剩余88张票.
窗口2出售第88的票,出票成功!剩余87张票.
窗口1出售第87的票,出票成功!剩余86张票.
窗口0出售第86的票,出票成功!剩余85张票.
窗口5开始出售 北京–>赣州 的票…
窗口5出售第85的票,出票成功!剩余84张票.
窗口4出售第84的票,出票成功!剩余83张票.
窗口3出售第83的票,出票成功!剩余82张票.
窗口2出售第82的票,出票成功!剩余81张票.
1 赞 收藏 评论

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多