墨小楼 / 待分类 / ortho

0 0

   

ortho

2015-10-27  墨小楼
(一)假设检验
在数理统计中假设检验的思想方法是:提出一个假设,把它与数据进行对照,判断是否舍弃它。其判断步骤如下:
(1)设假设H。正确,可导出一个理论结论,设此结论为R。;
(2)再根据试验得出一个试验结论,与理论结论相对应,设为R1;
(3)比较R。与Rl,若R。与Rl没有大的差异,则没有理由怀疑H。,从而判定为:'不舍弃H。'(采用H。);若R。与R1有较大差异,则可以怀疑H。,此时判定为:'舍弃H。'。
但是,R1/R。比l大多少才能舍弃H。呢?为确定这个量的界限,需要利用数理统计中关于F分布的理论。
若yl服从自由度为φ1的χ2分布,y2服从自由度为φ2的χ2分布,并且yl、y2相互独立,则(y1/φ1)/(y2/φ2)服从自由度为(φ1,φ2)的F分布。F分布是连续分布,分布模数是两个自由度(φ1,φ2)。称φ1为分子自由度,称φ2为分母自由度。在自由度为(φ1,φ2)的F分布中,某点右侧面积为p,也就是F比此值大的概率为p,把这个值写为 (p)。若检验的显著性水平(或危险率)给定为α时,则可以把 (α)作为临界值来检验假设。
这里,Se/σ2服从自由度为φe,的χ2分布;当H。成立,σ2=0时,SA/σ2也服从自由度为φA的χ2分布;又SA与Se相互成立,所以(SA/(φAσ2)/ Se/(φeσ2))=VA/Ve服从自由度为(φA,φe)的F分布。这就是假定H。正确时的理论结论R。。而试验结论Rl要与理论结论R。相比较。由给定的显著性水平,通常是α=0.05;分子自由度φ1=φA=a-l,分母自由度φ2=φe=a(n-1);查F分布表得出 (α)。所以H。:αl=α2=……=αa=0(σA2=0)的检验是:(显著性水平α)
FA=VA/Ve> (α) → 舍弃H。
FA=VA/Ve≤ (α) → 不舍弃H。
通常, (α)一般性地表示成Fα(φA,φB)。
假设因子A对试验结果的影响不显著,那么A的两个水平的效应该表现为相等或相近,即假设H。:α1=α2=0。如果因子A显著,则舍弃假设。
为了判断因子A是否显著,首先要计算比值

显然,这个比值越大,因子A对指标的影响越显著;反之,因子A就不显著。在给定置信度α后,如α=0.05,查F分布表,自由度φA是因子A的,自由度φe是误差的,其临界值Fα(φA,φe),如果
FA>Fα(φA,φe)
就舍弃假设,可以认为因子A是显著的;如果
FA≤Fα(φA,φe)
就没有理由否定假设,而只能认为因子A是不显著的。因为按照F分布表的物理念义,F值小于Fα(φA,φe)的概率是95%,即有95%的机会出现小于Fα(φA,φe)的F值,既然出现了这种情况,就有了95%的把握,所以就没有理由否定假设,只能接受假设,认为因子A不显著。另一方面,F值大于Fα(φA,φe)的概率是5%,也就是只有5%的机会出现大于Fα(φA,φe)的F值,这是小概率事件,如果小概率事件居然发生了,则可认为情况异常,假设不可信,必须否定假设,因子A是显著的。
对其他因子的显著性检验完全类似。
(二)方差分析表
由总平方和与各因素平方和即可求得误差平方和,亦称剩余平方和。是总平方和减各因素平方和所得。如正交表有一空列,则该列的平方和就量误差平方和。但在正交表饱和试验的情况下,即所有各列全部排满时,误差平方和一般用各因素平方和中几个最小的平方和之和来代替,同时,这几个因素不再作进一步的分析。
自由度:φT=试验次数一1
φA,B…=水平数一1
φA×B=φA×φB
φe=φT-φA-φB-……-φD

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。如发现有害或侵权内容,请点击这里 或 拨打24小时举报电话:4000070609 与我们联系。

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章
    喜欢该文的人也喜欢 更多