费马大定理 从勾股方程 x2+y2=z2 的正整数解,自然联想到下面这些方程: 有没有正整数解? 法国数学家费马(P.Fermat,1601-1665,)曾宣称,他解决了这个问题,当n为大于2的整数时,方程(※)没有正整数解.他在一本古希腊数学家丢番图(Diophantos)的著作的边页上写道:“我已经找到这个令人惊讶的证明,但是书页的边太窄,无法把它写出.”费马是否真的证明了这个问题,我们无从知晓.但这个问题却困扰了数学家350年之久,许多数学家是穷其一生研究费马大定理,最终均以失败告终.17世纪德国人募捐了10万金马克,拟奖励解决者;1850年和1861年法国科学院曾先后两度悬赏一枚金质奖章和3000法郎,但仍无人报领;1908年,一位德国商人将10万马克捐赠哥廷根科学院,再次向全世界征求“费马大定理”的证明,限期100年. 1993年6月23日,美国普林斯顿大学教授安德鲁·怀尔斯(Andrew.J.Wiles,1953-)在他的家乡剑桥大学的牛顿研究所作了一场报告,汇报了他长达8年潜心研究的成果,最后他在黑板上写道:“费马大定理由此得证”.当他把这几个大字写完时,会场先是寂静无声,突然是爆发出一阵经久不息的掌声.照相机、摄像机记录了这个历史性时刻.许多人以短信、电子邮件向全世界通告了这个消息. 第二天世界各大报纸纷纷以大量篇幅给予了报道.一夜之间,怀尔斯成为世界最著名的数学家.《人物》杂志将怀尔斯与戴安娜王妃一起列为“本年度25位最具魅力者”.1995年5月《数学年刊》以整整一期的篇幅刊登了他的研究成果. 2005年8月28日,怀尔斯第一次踏上中国的土地,29日到北京大学,30日下午在北京大学英杰交流中心阳光大厅演讲.讲台上,怀尔斯从容自在,以流利的英语回顾了费马大定理的历史和300多年来数学家攻克费马大定理的灿烂历程.同时也交流了他的研究心得,与中国同行分享了他的成功与喜悦. 谈起费马大定理的意义,有人归纳为三条: (1)人类智力活动的一曲凯歌 (2)会下金蛋的鹅 (3)促进其他科学技术的发展 费马大定理,捷克,2000年 费马大定理,比利时,2000年 |
|