分享

看生物识别如何认识独一无二的你

 Ricky_图书馆 2016-03-31
从我们呱呱坠地的时候,就注定我们都是独一无二的。我们都有与别人不同的指纹、声音、虹膜等等,让别人没有办法模仿。利用这些,科学家门研究出生物识别技术,让我们随时随地携带了“钥匙”,而且不会忘记。

电影里常常出现的镜头,只要演员的眼睛看一下扫描器,他的身份便会立即辨认出来。这便是生物识别的一种了。而现在,生物识别已渐渐渗透到我们的生活中,如手机的指纹解锁、指纹打卡机等等。所谓生物识别技术就是通过计算机与光学、声学、生物传感器和生物统计学原理等高科技手段密切结合,利用人体固有的生理特性(如指纹、脸象、虹膜等)和行为特征(如笔迹、声音、步态等)来进行个人身份的鉴定。

那么,不同种类的生物识别是怎么运行的呢?下面跟随小编一起了解一下生物识别中用到的技术算法吧。
指纹识别技术


指纹识别技术现在主要应用在手机的指纹解锁、指纹拍照、指纹打卡和指纹支付等。指纹识别过程同所有的生物体特征识别的过程类似,分为用户注册和特征匹配2个部分。


首先,需要录入指纹图像,对获取的原始图像进行处理,包括图像增强、分 割、细化、二值化等。

然后,对指纹的细节特征进行提取,比较常见的特征点有分叉点、端点,最后,生成模板储存在系统数据库中。无论是验证或者辨识的过程, 都需要将待识别的用户的指纹图像再一次进行同样的图像分割、细化、二值化、特征提取等一系列步骤,生成和数据库模板同样的数据格式。

最后,进行比对,得出 识别的结果。

由于某类指纹传感器仅仅适合同种类型的采集仪验证使用,为了允许更多的用户使用和阻止假冒用户试图欺骗系统,多传感器指纹融合提高系统的性能显得很有必要。
提出的融合框架

图1为提出的多传感器指纹验证系统框架图。首先,通过光学和电容传感器采集用户的指纹图像。然后,对图像进行预处理和分别提取两类传感器采集的指纹图像的特征,基于细节点的匹配算法被分别应用到光学和电容细节点集,因此,有2个匹配分数,并使用融合规则融合这些分数。

  
图1多指纹传感器验证系统框架图

由于当今指纹传感器规格很多,但是,至今仍然没有一个恰当和统一的协议和标准。目前,市场上现有的传感器主要有光学传感器和电容式传感器两类。
光学传感器工作原理

它的基本原理如下:将手指按压在玻璃平面的一侧,在玻璃的另一侧安装有LED光源和CCD摄像头,LED发出的光束以一定的角度照射向玻璃,摄像头用于 接收从玻璃表面反射回的光线。手指上的脊线与玻璃表面接触,谷线不与玻璃表面接触,因此,照射在指纹脊线所接触部分的玻璃表面的光线被漫反射,而照射在指 纹谷线所对应的玻璃表面的光线被全反射,从而在由CCD摄像头捕获的图像中,对应指纹脊线的部分颜色较深,对应指纹谷线的部分颜色较浅。
电容传感器工作原理

电容传感器原理根据按压到采集头上的手指的脊和谷在手指表皮和芯片之间产生不同的电容,芯片通过测量空间中的不同的电磁场得到完整的指纹。由这一构造原 理,可以大大地提高指纹的防伪性。伪造的指纹一般用硅树脂或者白明胶等绝缘材料,在电容传感器上是无法成像的,这样使伪造的指纹无用武之地。但电容技术的 芯片昂贵,且易受到干扰。
指纹图像处理

在该识别过程中,首先,通过指纹采 集仪器采集到指纹,由于采集指纹图像时图像质量不高或者在捺取指纹过程中因用力不均造成指纹畸变,常常会造成指纹图像分割的不准确,给后续的指纹识别带 来更大的困难,造成指纹自动识别系统的拒识或误识,所以,指纹采集后的第一个关键技术就是对采集到的指纹图像进行预处理,包括对指纹图像的增强、二值化和 细化等。预处理完成后即可进行特征提取,然后,进行特征匹配,输出匹配结果,如图2。

 
 图2指纹图像预处理步骤


最后,细节点被提取出来,细节点定义为:端点和分又点(如图3),纹线端点是一条纹路的终结点,而纹线分叉点是一条纹路再次分开成为两条纹路的点。这2种特征点在指纹图像中出现的几率最大、最稳定,易于检测,而且,足以描述指纹的唯一性。

  
图3指纹细节点类型

两幅指纹图像的匹配主要是解决旋转、平移和形变等问题。本文中,指纹匹配的输入是2个特征点的点集尸与Q,其中一个点集P是从输入的指纹图像中提取出来的,另一个点集合Q则是预先从标准的指纹图像中提取出来储存在模板库中。这2个点集合分别表示为


其中,电容传感器工作原理记录了点集P中第i个特征点的3条信息:坐标、Y坐标与方向,电容传感器工作原理则记录了点集Q中第j个特征点的3条信息:x 坐标,y坐标与方向。假设两幅指纹图可以完全匹配起来,则可通过对输入的指纹图作某种变换(旋转、平移与伸缩)得到模板中的指纹图,因此,点集P可以通过 旋转、平移与伸缩等变换近似成点集Q。


为了能够将输入指纹图像中的某一个特征点按照一定的变换方式转换成模板指纹图像中的相对应位置, 需要知道相应的变换因子,△x与△y分别为x,y方向上的平移因子,△θ则是旋转因子。匹配基准点的确定是通过判断这2个三角形的相似程度得到的,在求取 了两幅指纹图像之间的匹配基准点和变换因子后,本文对待识别指纹相对于模板指纹进行旋转、平移变换,以便判断两枚指纹是否来自于同一个手指。在本文中,求 取变换后的待识别指纹的特征点坐标位置和所在区域的纹线方向。然后,将变换后的待识别指纹特征点集叠加到模板指纹特征点集上,检测2个特征点集合中相重合 的特征点数目。由于本文中的匹配是一种非精确匹配,即使是一对匹配的特征点对,它们之问也不会完全重合,总是在位置、方向上存在有一定的偏差,所以,必须 有一定的偏差容忍度。


为此,这里采用一种称为界定盒的方法。对模板指纹特征点集中的每一个特征点,选取它周围的一个矩形区域作为它的界定盒,只要变换后的待识别指纹中的特征点经过叠加后落在这个区域之内,而且,方向基本一致,可以认为这2个特征点对是一对匹配的特征点。


最后,算法统计所有相匹配的特征点数目,通过式(1)转换成匹配分数,其中,maxscore是通过叠加匹配的细节点个数得到的最大匹配得分,Temp—Num和Input—Num分别是模板和输入指纹的细节点数目。



计算的匹配分数代表了相比较的两幅指纹的相似程度。参数值越大,相似性程度越高,而如果得分较小时,说明这一用户不一定是其宣称的用户,访问将被拒绝。


这里所使用的算法是一种典型的基于特征点坐标模型的点模式匹配算法。它对匹配过程中最难的一步一基准点的确定和变换参数的求取作了较深入的研究,根据3 个近邻的特征点之间的相互关系来确定基准点、求取变换参数。该算法在一定程度上能够加快基准点的求取,从而提高整个匹配算法的速度。同时,该算法是根据多 点来确定变换参数,而不是通常意义上的一点,在一定程度上可以消除在特征提取过程中所引入的位置、角度的偏差,得到更为准确的变换参数。
光学和电容传感器的融合

So,Sc是分别由光学传感器和电容传感器采集的图像运用匹配算法所获得的匹配分数,s融合后的分数和S。So,Sc之间有如下关系



将S和设定的阈值相比较:if:S>threshold系统允许进入,为真;否则,系统拒绝该用户,当然,上述方法也可用于2只以上的。


根据方程(2)研究了两种类型的匹配分数转换执行融合规则,第一种类型融合规则属于所谓的固定融合规则,因为它们不需要参数估计,尤其研究了两类传感器的匹配分数中值。



第二种融合是所谓的训练样本规则,因为它们需要为了获得理想的阈值分数而让样本经过多次训练,采用公式(4)训练样本。



式中W0,W1,W2为权值向量,显然,中值融合的效果要差于逻辑融合,逻辑融合的过程就是以中值为基础,经过多次迭代,总能找到一组合适的权值向量(W0,W1,W2),使得阈值分数S接近于最佳值。
虹膜识别技术


虹膜识别相比于指纹识别技术来说,更为方便和精确。虹膜识别不需物理接触,快捷方便。因为每一个虹膜都包含一个独一无二的基于像冠、水晶体、细丝、斑点、结构、凹点、射线、皱纹和条纹等特征的结构,因此没有任何两个虹膜是一样的,这使得虹膜识别技术更为安全可靠。这种技术在生物测定行业已经被广泛认为是目前精确度、稳定性、可升级性最高的身份识别系统。

采集

从直径11mm的虹膜上,Dr.Daugman的算法用3.4个字节的数 据来代表每平方毫米的虹膜信息,这样,一个虹膜约有266个量化特征点,而一般的生物识别技术只有13个到60个特征点。266个量化特征点的虹膜识别算 法在众多虹膜识别技术资料中都有讲述,在算法和人类眼部特征允许的情况下,Dr. Daugman指出,通过他的算法可获得173个二进制自由度的独立特征点。在生物识别技术中,这个特征点的数量是相当大的。
算法

第一步是通过一个距离眼睛3英寸的精密相机来确定虹膜的位置。当相机对准 眼睛后,算法逐渐将焦距对准虹膜左右两侧,确定虹膜的外沿,这种水平方法受 到了眼睑的阻碍。算法同时将焦距对准虹膜的内沿(即瞳孔)并排除眼液和细微组织的影响。 单色相机利用可见光和红外线,红外线定位在700-900mm的范围内(这是IR技术的低限,美国眼科学会在他们对macularcysts研究中使用同 样的范围。) 在虹膜的上方,算法通过二维Gabor子波的方法来细分和重组虹膜图象,第一个细分的部分被称为phasor,要理解二维gabor子波的原理需要很深的 数学知识。


精确度

由于虹膜代码(Iris Code)是通过复杂的运算获得的,并能提供数量较多的特征点,所以虹膜识别技术是精确度最高的生物识别技术,具体描述如下:
两个不同的虹膜信息有75%匹配信息的可能性是1:106                
等错率:1:1200000 
两个不同的虹膜产生相同Iris Dode(虹膜代码)的可能性是1:10 52 
录入和识别

整个过程其实是十分简单的,虹膜的定位可在1秒钟之内完成,产生虹膜代码(Iris Dode) 的时间也仅需1秒的时间,数据库的检索时间也相当快,就是在有成千上万个虹膜信息数据库中进行检索,所用时间也不多,有人可能会对如此快的速度产生质疑, 其实虹膜识别技术的算法还受到了现有技术的制约。我们知道,处理器速度是大规模检索的一个瓶颈,另外网络和硬件设备的性能也制约着检索的速度。当然,由于 虹膜识别技术采用的是单色成像技术,因此一些图像很难把它从瞳孔的图像中分离出来。但是虹膜识别技术所采用的算法允许图像质量在某种程度上有所变化。相同 的虹膜所产生的Iris Dode(虹膜代码)也有25%的变化,这听起来好象是这一技术的致使弱点,但在识别过程中,这种Iris Dode(虹膜代码)的变化只占整个虹膜代码的10%,它所占代码的比例是相当小的。 


既然虹膜解锁认假率如此之高,看起来如此安全,那么可能就会有很多朋友提问了,虹膜解锁究竟能否取代指纹识别呢?其实这是一个开放性的问题,毕竟目前在手机领域,指纹识别都还没有真正的普及,对于识别率还没有真正达标的虹膜解锁,我们更不好去为它的未来下定论。


不过以小编的个人观点来猜测,虹膜解锁与指纹识别其实并不存在谁取代谁的冲突,指纹识别虽然在认假率上不及虹膜解锁,但强在便捷,当我们想要使用手机的 时候,第一时间同手机接触的部位通常是手,而并非眼睛,另外,虹膜解锁为了保证安全性,在识别的时间上往往不及指纹识别快速,同时对于解锁的姿势也必然会 有一定的要求,这点在一些科幻电影中我们就能够看出,即便虹膜解锁未来能够解决环境方面的影响,但识别速度和识别角度必然是它最大的硬伤。
人脸识别技术


人脸识别也叫人像识别, 面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸与人体的其它生物特征(指纹、虹膜等)一样与生俱来,它的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提。

人脸识别主要算法原理

主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。


1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果;


2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。


3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。

基于几何特征的方法

人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系 的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用 于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。


采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。


可变形模板法可以视为几何特征方法的一种改进,其基本思想是 :设计一个参数可调的器官模型 (即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。


这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。 基 于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关 系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 
局部特征分析方法(Local Face Analysis)

主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空 间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。
特征脸方法(Eigenface或PCA)

特征脸方法是90年代初期由Turk和Pentland提出的目前最流行的算法之一,具有简单有效的特点, 也称为基于主成分分析(principal component analysis,简称PCA)的人脸识别方法。


特征子脸技术的基本思想是:从统计的观点,寻找人脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。这些特征向量称为特征脸(Eigenface)。


实际上,特征脸反映了隐含在人脸样本集合内部的信息和人脸的结构关系。将眼睛、面颊、下颌的样本集协方差矩阵的特征向量称为特征眼、特征颌和特征唇,统称特征子脸。特征子脸在相应的图像空间中生成子空间,称为子脸空间。计算出测试图像窗口在子脸空间的投影距离,若窗口图像满足阈值比较条件,则判断其为人脸。 


基于特征分析的方法,也就是将人脸基准点的相对比率和其它描述人脸脸部特征的形状参数或类别参数等一起构成识别特征向量,这种基于整体脸的识别不仅保留了人 脸部件之间的拓扑关系,而且也保留了各部件本身的信息,而基于部件的识别则是通过提取出局部轮廓信息及灰度信息来设计具体识别算法。现在Eigenface(PCA)算法已经与经典的模板匹配算法一起成为测试人脸识别系统性能的基准算法;而自1991年特征脸技术诞生以来,研究者对其进行了各种各样的实验和理论分析,FERET'96测试结果也表明,改进的特征脸算法是主流的人脸识别技术,也是具有最好性能的识别方法之一。


该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。其技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。Turk和Pentland提出特征脸的方法,它根据一组人脸训练图像构造主元子空间,由于主元具有脸的形状,也称为特征脸  ,识别时将测试  图像投影到主元子空间上,得到一组投影系数,和各个已知人的人脸图像比较进行识别。Pentland等报告了相当好的结果,在 200个人的 3000幅图像中得到 95%的正确识别率,在FERET数据库上对 150幅正面人脸象只有一个误识别。但系统在进行特征脸方法之前需要作大量预处理工作如归一化等。


在传统特征脸的基础上,研究者注意到特征值大的特征向量 (即特征脸 )并不一定是分类性能好的方向,据此发展了多种特征 (子空间 )选择方法,如Peng的双子空间方法、Weng的线性歧义分析方法、Belhumeur的FisherFace方法等。事实上,特征脸方法是一种显式主元分析人脸建模,一些线性自联想、线性压缩型BP网则为隐式的主元分析方法,它们都是把人脸表示为一些向量的加权和,这些向量是训练集叉积阵的主特征向量,Valentin对此作了详细讨论。总之,特征脸方法是一种简单、快速、实用的基于变换系数特征的算法,但由于它在本质上依赖于训练集和测试集图像的灰度相关性,而且要求测试图像与训练集比较像,所以它有着很大的局限性。


基于 KL 变换的特征人脸识别方法
基本原理:KL变换是图象压缩中的一种最优正交变换,人们将它用于统计特征提取,从而形成了子空间法模式识别的基础,若将KL变换用于人脸识别,则需假设人脸处于低维线性空间,且不同人脸具有可分性,由于高维图象空间KL变换后可得到一组新的正交基,因此可通过保留部分正交基,以生成低维人脸空间,而低维空间的基则是通过分析人脸训练样本集的统计特性来获得,KL变换的生成矩阵可以是训练样本集的总体散布矩阵,也可以是训练样本集的类间散布矩阵,即可采用同一人的数张图象的平均来进行训练,这样可在一定程度上消除光线等的干扰,且计算量也得到减少,而识别率不会下降。
基于弹性模型的方法


Lades等人针对畸变不变性的物体识别提出了动态链接模型 (DLA),将物体用稀疏图形来描述 (见下图),其顶点用局部能量谱的多尺度描述来标记,边则表示拓扑连接关系并用几何距离来标记,然后应用塑性图形匹配技术来寻找最近的已知图形。Wiscott等人在此基础上作了改进,用FERET图像库做实验,用 300幅人脸图像和另外 300幅图像作比较,准确率达到 97.3%。此方法的缺点是计算量非常巨大 。


Nastar将人脸图像 (Ⅰ ) (x,y)建模为可变形的 3D网格表面 (x,y,I(x,y) ) (如下图所示 ),从而将人脸匹配问题转化为可变形曲面的弹性匹配问题。利用有限元分析的方法进行曲面变形,并根据变形的情况判断两张图片是否为同一个人。这种方法的特点在于将空间 (x,y)和灰度I(x,y)放在了一个 3D空间中同时考虑,实验表明识别结果明显优于特征脸方法。


Lanitis等提出灵活表现模型方法,通过自动定位人脸的显著特征点将人脸编

码为 83个 模型参数,并利用辨别分析的方法进行基于形状信息的人脸识别。弹性图匹配技术是一种基于几何特征和对灰度分布信息进行小波纹理分析相结合的识别算法,由于 该算法较好的利用了人脸的结构和灰度分布信息,而且还具有自动精确定位面部特征点的功能,因而具有良好的识别效果,适应性强识别率较高,该技术在FERET测试中若干指标名列前茅,其缺点是时间复杂度高,速度较慢,实现复杂。

神经网络方法(Neural Networks)

人工神经网络是一种非线性动力学系统,具有良好的自组织、自适应能力。目前神经网络方法在人脸识别中的研究方兴未艾。Valentin提出一种方法,首先提取人脸的 50个主元,然后用自相关神经网络将它映射到 5维空间中,再用一个普通的多层感知器进行判别,对一些简单的测试图像效果较好;Intrator等提出了一种混合型神经网络来进行人脸识别,其中非监督神经网络用于特征提取,而监督神经网络用于分类。Lee等将人脸的特点用六条规则描述,然后根据这六条规则进行五官的定位,将五官之间的几何距离输入模糊神经网络进行识别,效果较一般的基于欧氏距离的方法有较大改善,Laurence等采用卷积神经网络方法进行人脸识别,由于卷积神经网络中集成了相邻像素之间的相关性知识,从而在一定程度上获得了对图像平移、旋转和局部变形的不变性,因此得到非常理想的识别结果,Lin等提出了基于概率决策的神经网络方法 (PDBNN),其主要思想是采用虚拟 (正反例 )样本进行强化和反强化学习,从而得到较为理想的概率估计结果,并采用模块化的网络结构 (OCON)加快网络的学习。这种方法在人脸检测、人脸定位和人脸识别的各个步骤上都得到了较好的应用,其它研究还有 :Dai等提出用Hopfield网络进行低分辨率人脸联想与识别,Gutta等提出将RBF与树型分类器结合起来进行人脸识别的混合分类器模型,Phillips等人将MatchingPursuit滤波器用于人脸识别,国内则采用统计学习理论中的支撑向量机进行人脸分类。


神经网络方法在人脸识别上的应用比起前述几类方法来有一定的优势,因为对人脸识别的许多规律或规则进行显性的描述是相当困难的,而神经网络方法则可以通过学 习的过程获得对这些规律和规则的隐性表达,它的适应性更强,一般也比较容易实现。因此人工神经网络识别速度快,但识别率低 。而神经网络方法通常需要将人脸作为一个一维向量输入,因此输入节点庞大,其识别重要的一个目标就是降维处理。


PCA的算法描述:利用主元分析法 (即 Principle Component Analysis,简称 PCA)进行识别是由 Anderson和 Kohonen提出的。由于 PCA在将高维向量向低维向量转化时,使低维向量各分量的方差最大,且各分量互不相关,因此可以达到最优的特征抽取。
其它方法:

除了以上几种方法,人脸识别还有其它若干思路和方法,包括一下一些:


1) 隐马尔可夫模型方法(Hidden Markov Model)


2) Gabor 小波变换+图形匹配


(1)精确抽取面部特征点以及基于Gabor引擎的匹配算法,具有较好的准确性,能够排除由于面部姿态、表情、发型、眼镜、照明环境等带来的变化。


(2)Gabor滤波器将Gaussian网络函数限制为一个平面波的形状,并且在滤波器设计中有优先方位和频率的选择,表现为对线条边缘反应敏感。


(3)但该算法的识别速度很慢,只适合于录象资料的回放识别,对于现场的适应性很差。


3)人脸等密度线分析匹配方法


(1)多重模板匹配方法
该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。


(2)线性判别分析方法(Linear Discriminant Analysis,LDA)


3)本征脸法

本征脸法将图像看做矩阵,计算本征值和对应的本征向量作为代数特征进行识别 ,具有无需提取眼嘴鼻等几何特征的优点 ,但在单样本时识别率不高 ,且在人脸模式数较大时计算量大 


(4)特定人脸子空间(FSS)算法

该技术来源于但在本质上区别于传统的'特征脸'人脸识别方法。'特征脸'方法中所有人共有一个人脸子空间,而该方法则为每一个体人脸建立一个该个体对象所私有的人脸子空间,从而不但能够更好的描述不同个体人脸之间的差异性,而且最大可能地摈弃了对识别不利的类内差异性和噪声,因而比传统的'特征脸算法'具有更好的判别能力。另外,针对每个待识别个体只有单一训练样本的人脸识别问题,提出了一种基于单一样本生成多个训练样本的技术,从而使得需要多个训练样本的个体人脸子空间方法可以适用于单训练样本人脸识别问题。


(5)奇异值分解(singular value decomposition,简称SVD)

是一种有效的代数特征提取方法.由于奇异值特征在描述图像时是稳定的,且具有转置不变性、旋转不变性、位移不变性、镜像变换不变性等重要性质,因此奇异值特征可以作为图像的一种有效的代数特征描述。奇异值分解技术已经在图像数据压缩、信号处理和模式分析中得到了广泛应用.

人脸识别被认为是生物特征识别领域甚至人工智能领域最困难的研究课题之一,困难主要是人脸作为生物特征的特点所带来的。因此人脸识别被广泛应用还需要一定的时间。


生物识别除了以上三种之外,还包括声音识别、手掌几何学识别、签名识别、视网膜识别等等,这些被用于公共安全、重点场所监控、金融安全、出入境管理、司法鉴定、刑侦破案、智能交通、教育考试等领域,我们也在其中获得了很多便利。每个人无法被复制的特征,这大概就是以后我们拥有的最大财富了吧!

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多