分享

模拟与数字布局(3)

 ldjsld 2016-08-25

三、12位传感系统为例的布局窍门

12位传感系统简介布局窍门以12位传感系统的良好布线方法作为应用举例,其目的为了讨论概念和原理,而不是为了将某个布线推荐为唯一可用的方案。
  其应用电路是一负载单元电路,该电路可精确测量传感器上施加的重量,然后将结果显示在LCD显示屏。系统电路原理图如图7所示。这儿采用的负载单元是Omega公司的LCL-816G桥式压力传感器。

5.jpg

LCL-816G传感器模型是由四个电阻元件组成的桥,需电压激励。将5V激励电压加在传感器高端,施加32盎司(重量单位)最大信号时,满刻度输出摆幅为+/-10mV差分信号。该小差分信号被双运放仪表放大器(MCP6021)放大。根据电路精度要求,选了一个12位A/D转换器。当转换器将输入端的电压进行数字化后,数字码经转换器SPI(串行外设端口发送到单片机。然后,单片机用软件查表法表将来自A/D转换器的数字信号转换为重量。此时如需要的话,线性化和标定工作可由单片机(控制器)代码实现。完成这一步后,结果送到LCD显示器。最后一步是为控制器软件固化。电路设计好后,下面即可设计印刷电路板和布线了。

3.1 关于设计印刷电路板和布线

需要说明的是, 若使用自动布线工具,则经常要返回来对布线做很大的修改。如果自动布线工具可以实现布线限制,可能还有成功的可能性。但如果自动布线工具没有限制选项的话,为此,最好的方法是不要使用自动布线工具,为此采用手工布线。

3.1.1 布线的一般准则

* 器件布局

既然是采用手工布线,那么第一个步骤是在板上放置器件。这个关键步骤应该做的比较好,因为可将噪声敏感器件和产生噪声器件分开放置。完成这个任务有两个准则:

第一、将电路中器件分成两大类:高速(>40MHz) 器件和低速器件。如果可能的话,将高速器件尽量靠近板的接插件和电源放置。

第二、将上述大类再分成三个子类:纯数字、纯模拟和混合信号。电路板的布线要符合要领:器件布局图应注意高速器件、低速器件与电路板的接插件和电源之间的关系;数字器件最靠近电路板的接插件和电源,与其他数字和模拟电路分离开了,与图4(a) 类同; 要将高频元件尽量靠近接插件和电源放置, 与图4(b) 类同;纯模拟器件距离数字器件最远,以确保开关噪声不会耦合到模拟信号路径中。

* 地和电源策略

确定了器件的大体位置后,就可以定义地平面和电源平面了。实现这些平面是需要一些策略技巧的。

首先,在PCB中不使用地平面是很危险的,尤其是在模拟和混合信号设计中。这是何因呢?其一,因为模拟信号是以地为基准的,地噪声问题比电源噪声问题更难应对。例如,在图7所示电路中,A/D转换器(MCP3201)的反相输入引脚是接地的;其二,地平面还对噪声有屏蔽作用。采用地平面可以很容易解决这些问题,如图8所示的布线在底层添加了地平面。地平面(图8b)有几处被信号线打断,应尽量减少地平面被断开的次数。电流返回路径不应缩短,因为这些走线会限制从器件到电源接插件的电流流动。A/D转换器输出码要密集得多,而电路的噪声码宽度仅为11个码,而在没有地平面或电源平面的电路的噪声码宽度要为15个码,其A/D转换器输出码不太要密集。

2.jpg

从上述数据很容易看出,地平面确实对电路噪声有抑制作用。当电路中没有地平面时,噪声的宽度大约为15个码;添加了地平面后,性能提高了约1.5倍或15/11倍。测试是在电磁干扰较低的实验室中进行的。

A/D转换器输出数字码的噪声可归因于运放的噪声和缺少抗信号混叠滤波器。如果电路中有“最少”量的数字电路,可能只需要一个地平面和一个电源平面就可以了。

需要注意的是,将数字和模拟地平面连接在一起的危险在于模拟电路会从电源引脚引入噪声,并将噪声耦合到信号路径中。在电路的一点或多点上,要将模拟电路和数字电路的地和电源连接在一起,以确保所有器件的电源、输入和输出共地,其标称值不会被破坏。

在12位系统中,电源平面并不象地平面那么重要。尽管电源平面可以解决许多问题,使电源线比电路板上其他走线宽两倍或三倍,以及有效使用旁路电容,都可以降低电源的噪声。

* 信号线

电路板(包括数字和模拟电路)上的信号线要尽量短。这个基本准则将降低无关信号耦合到信号路径的可能性。尤其要注意的是模拟器件的输入端,这些输入端通常比输出引脚或电源引脚具有更高的阻抗。例如,A/D转换器的参考电压输入引脚在进行转换期间是最为敏感的。对于图7中的12位转换器,输入引脚(IN+和IN-)对引入的噪声也很敏感。运放的输入端也有可能在信号路径中引入噪声。这些端通常具有109至1013的输入阻抗。

高阻抗输入端对于输入电流比较敏感。如果从高阻抗输入端引出的走线靠近有快速变化电压的走线(如数字或时钟信号线),就会发生这种情况,此时电荷通过寄生电容耦合到高阻抗走线中。这两条走线之间的关系,与图5所示类同。图5中,两条走线之间寄生电容C的值主要取决于走线之间的距离(d),以及两条走线保持平行的长度(L),其寄生电容C公式与上述公式(1)相同,通过这个模型,高阻抗走线中产生的电流等于:

1.JPG

尽管本文是关于布线的文章,但认为讨论一些电路设计的基本知识也是非常必要的。有关旁路电容的一个好原则是:在电路中始终包含旁路电容。如果设计电路时,没有加旁路电容,电源噪声很可能使电路的精度达不到12位。

* 旁路电容

可在电路板上的如下两个位置放置旁路电容:一个电容(12μF至I00μF)放置在电源侧;一个电容放置在每个有源器件(包括数字和模拟器件)旁边。加在器件上旁路电容的值取决于使用的器件。如果器件的带宽小于或大约等子1MHz,那么采用lμF的电容可以显著降低引入的噪声。如果器件的带宽约大于10MHz,则用0.1μF 的电容可能比较合适。如果带宽在这两个频率之间,可同时使用这两种容值的电容,或使用其一。(或请参考厂商的使用指南)。

电路板上的每个有源器件都需要一个旁路电容。旁路电容必须尽可能靠近器件的电源引脚放置,如图8所示。如果一个器件使用了两个旁路电容,容值小的电容要最靠近器件引脚。而且,旁路电容的引脚要尽量短。

* 抗信号混叠滤波器

可能注意到,图7所示的电路中没有抗信号混叠滤波器。正如数据所显示,这一疏忽在电路中引起了噪声问题。此电路板中,当在仪表放大器的输出和A/D转换器的输入之间接入一个四阶、10Hz抗信号混叠滤波器时,转换响应的性能大为提高。

模拟滤波可在模拟信号到达A/D转换器之前,消除叠加在模拟信号上的噪声,尤其是无关的噪声尖峰。模数转换器将对出现在其输入端的信号进行转换,这种信号可能包括传感器电压信号或噪声,抗信号混叠滤波器消除了转换过程中的高频噪声。

3.2 12位布线技巧归纳-PCB设计检查表

只要遵循如下几个准则,良好的12位布线技巧并不难掌握:

*检查器件相对于接插件的位置,确保高速器件和数字器件最靠近接插件。

*电路中至少要有一个地平面。

*使电源线比板上的其他走线宽。

*检查电流回路,寻找地线中的可能噪声源。这可通过确定地平面上所有点的电流密度和可能存在的噪声量来实现。

*正确旁路所有器件,将电容尽量靠近器件的电源引脚放置。

*使所有走线都尽量短。

*查看所有的高阻抗走线,逐条走线查找可能的电容耦合问题。

*确保对混合信号电路中的信号正确滤波。

四、结论

数字和模拟范围确定后,谨慎布线对获得成功的PCB是至关重要的。布线要领通常作为经验准则作介绍,因为很难在实验室环境中测试出产品的最终成功与否。因此,尽管数字和模拟电路的布线要领存在相似之处,但我们还是要认识到并认真对待其布线要领的差别。

尤其是有源数字走线靠近高阻抗模拟走线时,会引起严重的耦合噪声,这只能通过增加走线之间的距离来避免。
  

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多