[转载请注明出处] http://www.cnblogs.com/jerrylead 记得在高中做数学题时,经常要求曲线的切线。见到形如 上大学又学习了曲面切线和法向量的求法,求偏导是法向量,然后套公式求出切线。 一个经典例子如下: (来自web上某个《几何应用》ppt) 其中的向量n是F(x,y,z)的偏导数。 然而,这两者求法看似无关啊, 当然这些问题的问答都可以通过严格的数学推导完成。这里想从更加直白的角度来说明道理。 首先,法向量(梯度)是F(X)(其中X={x0,x1,x2,…xn}是n维向量)对各个分量求偏导后的结果,代表了F(X)在各个方向的变化率,整个法向量就是F(X)在各个方向上变化率叠加出来的向量。如对于一维的F(x)= 那么我们明白了,隐函数F(X)的法向量就是F(X)对各个分量的偏导数的向量。那么为何 说明F(x,y)的值究竟将在(x,y)的小范围能变化多少,这个变化率决定于x方向上的微小变换dx和y方向上微小变换dy的线性组合,而他们的系数就是偏导数。将dx和dy换成单位向量i和j就是法向量了。那么梯度也就反映了F(X)在某一点的变化率和变换方向。 说的有点绕口,简而言之,对于一个隐函数F(X),我们想知道在给定X附近F(X)的变化方向和大小。怎么去刻画?由于X的各个方向(x0,x1,x2…xn)上变化速率和方向都不同(比如在x0上以平方级别变化,在x1上以线性方式变化,这个要根据具体的表达式了),而我们想知道他们叠加在一块是怎么变化的。我们使用全微分公式(比如上面的 回到为什么“ 求F对y的偏导得-1。 由于切线和法向量是垂直的,因此切线和法向量内积为0。 回到上面蓝色图片中的曲面求切平面问题,求出某点的法向量后,在该点的切平面要满足两个条件,一是要过切点,而是要反映出该点的变化方向(这里不是该点F(X)值的变化方向,而是该点自己的变化方向)。然而该点的变化最终要反映出该点F(X)值的变化,也就是切平面的变化要反映出法向量的变化,而偏导数正是反映出了F(X)值的变化。因此切平面的偏导数与F(X)的偏导数是一样的。我们从蓝色图片中看到,切平面正是利用了F(X)的偏导数。 有上面的全微分公式,我们可以更好地理解极值,为什么常说函数取得极值的时候导数为0呢。假设一维情况,
以上只是一些个人浅显理解,目的是建立感性认识,会存在一些纰漏。 |
|