分享

能否尽量通俗地解释什么叫做熵?

 Wdjljjfj 2017-10-11

循着传统教科书的思路讲述熵会令人迷茫,我试图从最通俗的角度来介绍熵。

大家知道,人类有一个时期曾热衷于发明“永动机”,遭遇无数次失败后才领悟到,自然界有一条坎--能量守恒,要发明一旦启动后不需再输入能量而能源源不断对外输出功的机器是不可能的。

那么,不超越这条坎,我遵循能量守恒是不是就一定可以成功了呐?或者换一种说法:自然界中除了能量守恒外是否还有其他不能逾越的坎呢?

我们先来设想一下:我们如果能发明一种机器,能从一个系统吸取热量把它转化为功,例如,让它从一个大箱子中吸取热量,转化为功来带动洗衣机运转,这不违背能量守恒。如果能成功,这个大箱子就是一台不耗电的冰箱,洗衣机也不需消耗电能来驱动,这样的好事白痴也知道不可能。再例如:我们能不能设计这样一种机器,它能从温度较低的系统A(譬如你的房间)吸取热量,送入温度较高的系统B(譬如热水器),这并不违背能量守恒,但如果能成功,你就获得了不耗电的空调和热水器。

这种异想天开的主意再善于空想的人都不会有,因为人类早就领悟到,自然过程是有方向性的,日如热量会自发地从高温系统传输向低温系统而不是相反、摩擦会生热(功自发转化为热量)而不是相反。这种会自发发生的过程我们称之为“正过程”,反方向的则称为“逆过程”。

一般地说,逆过程是不会自发发生的。或者,更严格地说,逆过程不是绝不可能发生,而是不会单独发生。蒸汽机、内燃机不是就是把热转化为功吗?只是它不能把从锅炉或气缸中吸取的热量全部转化为功,而是必须把大部分热量释放到温度较低的环境中。即“热转化为功”这个逆过程必须捆绑一个“把热量从高温系统传输到低温系统”这个正过程才可能发生;同样,把热量从温度较低的系统抽送到温度较高的系统也是可以的,譬如空调、冰箱,但这必须用电或其他动力驱动制冷机(外界作功,这些功最后变成热)。也就是说,要想完成把热量从低温系统送入高温系统这个逆过程,必须捆绑一个把功变成热的正过程才能实现。

进一步的思考和研究表明,捆绑的正过程必须强于我们需要的逆过程,使得捆绑后的总过程还是正过程,这样目标才能实现。这里有一个问题:如何判断一个过程的强弱呢?

物理学家发现,一个热力学系统处在某一状态,就具有与这个状态对应的量(状态函数)--熵,状态变化了,系统的熵也改变。系统发生正过程它的熵增加,逆过程熵减少。在封闭系统内发生的过程,只能朝熵增加的方向发展。或者换种更通俗的说法:任何变化过程中,与这个变化有关的所有物体的总熵只会增加。

到这时,人们对熵的认识是系统的每一个状态对应着一个量(状态函数)--熵,它决定着系统能向哪个方向发展。这就像重力场中的物体处在某一个位置,都对应着一个量(状态函数)--势能,它决定着这个物体能够向哪个方向运动。

熵是一个新的概念,中文中原来也没有相对应的字。由于熵的计算由热量与系统温度相除所得的商有关,所以物理学家就创造了一个新字“熵”,意思是与热量与温度的商有关,又因为这是热学中的一个概念 ,所以加上火字傍。

到这里,人们主要关注的是系统状态变化后熵的改变量,但它处在某状态是熵到底是多少?其更本质的物理意义是什么呢?

与物理学的其他分支不同,热学其实有从不同的出发点建立的两套理论:一是热力学,这是从宏观角度出发,观察测量系统的宏观参量从而总结出其中的规律;另一套理论从宏观系统都是由大量作不规则运动的分子组成,显然我们不能精准地跟踪所有分子的运动,但可以用统计方法加以研究,从而得出系统在宏观上应该表现出的规律,这套理论叫“统计物理学”(他的初级课程即分子运动论)。要了解熵的本质,必须从微观入手。

有个叫布尔兹曼的科学家研究后认为,一个宏观热力学系统的熵与它所包含的微观态数量有关,所包含微观态个数越多,系统的熵就越大。因为系统包含的微观态数量越多,系统就越“混乱”,所以可把熵称作表征系统混乱(无序)程度的物理量。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多