科学记数法是与现实世界中大数的表示相关的一节数学内容.教材先引导学生观察10的正整数次幂的特点,让学生自己总结归纳得出结论后,再给出利用10的正整数次幂来表示绝对值大于10的较大的数的方法,并让学生通过观察思考得出整数的位数与10的指数的关系,从而掌握用科学记数法表示绝对值较大的数的方法. 二、教学目标 1. 了解科学记数法的意义,会用科学记数法表示绝对值大于10的数. 2.近似数是指与准确数相接近的数.近似数通常因测量、估算,或用四舍五入等方法得到.近似数与准确数的接近程度,通常用精确度来刻画.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.如: 1.用科学记数法表示大数 ①求一个数的近似数通常用四舍五入法,精确到哪一位,就看那一位后面的数字.如果这个数字大于或等于5,就向前一位进一;如果小于5,就直接舍去.比较大的数取近似数时,通常用科学记数法表示,如104 300精确到千位,表示为 ![]() ②用四舍五入法得到的近似数,如果按要求精确到的数位上的数字是0,这个0不能随意去掉,若去掉这个0,则这个近似数的精确度就不符合原来要求了. ③近似数除用四舍五入法获得外,有时还根据实际情况用收尾法和去尾法获得.收尾法是指指定精确的数位后面只要有数字就进一,如租船游玩,要让所有人都能乘船,哪怕剩下的只有1个人,也要另外租一条船,这时就用收尾法取近似值.去尾法是指指定精确的数位后面的数字全部舍去,如用步做衣服,只要剩下的布不够做一套,就用去尾法取近似值. 例3.求下列各数的近似数: ⑴0.298(精确到百分位);⑵3.456 1(精确到0.01);⑶21000(精确到千位);⑷32.263(精确到十分位). 解析:⑴0.298≈0.30;⑵3.456 1≈3.46;⑶21000≈ ![]() 4.写出近似数的精确度 精确度表示近似数与准确数的接近程度,即近似数的精确程度.当已知近似数,说明其是精确到哪一位时,就是看给出的近似数的最后一位数字所在的数位,如近似数2.31精确到百分位(或精确到0.01).带单位的数或用科学记数法表示的数,先还原为原数,再看还原前精确到的数位在还原后的哪一个数位上.形如 ![]() ![]() 例4.下列由四舍五入得到的近似数,各精确到哪一位? ⑴0.0301;⑵ ![]() ![]() 解析:⑴0.030 1精确到万分位;⑵ ![]() ![]() |
|
来自: 百眼通 > 《03七上数学_教-307》