分享

电动车主要看:电动汽车动力电池管理系统全面解析2

 壹碗牛肉面 2017-11-13

   

高压互锁的目的是,用来确认整个高压系统的完整性的,当高压系统回路断开或者完整性受到破坏的时候,就需要启动安全措施了。

a) HVIL的存在,可以使得在高压总线上电之前,就知道整个系统的完整性,也就是说在电池系统主、负继电器闭合给电之前就防患于未然

b) HVIL的存在,是需要整个系统构成的,主要通过连接器的低压连接回路上完成的,电池管理单元一般需要提供电路的检测回路。

HVIL源有三种不同的方式,5V、12V和PWM波。

这里的电路很大的一块是有ASIC完成的,下图8表征了不同ASIC电路。

                                  图8 ASIC电路的发展

第二部分 状态估计功能

1)SOC和SOH估计

电池系统中最核心也是最难的一部分就是SOC和SOH的估计。SOC估算常见的有安时积分法(SOCI),和开路电压标定法(SOCV),安时积分最大的问题是随着时间的推移误差会越来越大,开路电压标定的问题是,电池需要在静置很长时间以后的开路电压对应的SOC才是准确的,汽车在行驶的时候采集的电压用来标定SOC那是不准确的。实际的使用中,一般以SOCV为主用SOCI,在实际使用中也在用一定的卡尔曼滤波法,神经网络法来提高SOC的计算,但是限于MCU的运算速度和能力,整个算法的复杂度是有限制的。
 

                                  图9 SOC和SOH估算

2)均衡

一个串联的电池包,由于电池和电池管理的原因,总是会出现不均衡的现象。在实际使用过程中,每个串联的输出容量是不一样的。而电池,不仅有过放电和过充电的限制,而且在不同温度和不同SOC下,输入和输出的功率也存在限制。也就是说,单个电池的限制,就会影响到整个电池。这里不等于单个超限,就等于整个不安全,而是那个单体电池会受到损害,进行出现持久性的问题。

1.电池包内各个单体电池之间的个体差异:单体容量差异、单体内阻差异、单体自放电差异、工作时候电流差异和休眠时候电流差异

2.电池包内随着时间变化:单体容量差异、单体内阻差异、单体自放电差异

3.客户使用 充电时间、放电时间

4.外部环境 同温度下的自放电、不同SOC下的自放电

5.系统相互影响:BMS的工作状况,这个因素和BMS的工作状态有关系。

当然接下来我们需要选择均衡的方法,主要包括硬件拓扑和均衡算法两部分,在汽车行业应用中,我们还有可靠性、成本和安全等几方面的限制。

                                    图10 均衡的方式

3)电池功率限制

新能源汽车中的电池容量是不同的,锂电池系统为整车特别是电机提供能量,需要满足电机的功率要求。而一定容量的电池电池在不同的SOC,不同的温度下,其输入和输出的功率是有一定限制的。实际的运行中,混合动力电池包SOC窗口开的很小,纯电动汽车用的非常宽,用完就结束使用,而插电式混合动力在电池耗尽的时候,则需要考虑输出功率的限制。电池管理系统需要发送给整车控制器一个功率限制参数,这是根据一个三维表核算出来,包含温度、SOC、电池容量,如图11所示。

                                     图11 SOC控制表
 

第三部分 辅助系统功能

这部分的功能,一般电池管理系统是做辅助使用的,往往与整车控制系统或者其他相关的系统进行联合使用。

1)继电器控制

电池包内一般有多个继电器,电池管理系统至少要完成对继电器的驱动供给和状态检测,继电器控制往往是和整车控制器协调后确认控制器,而安全气囊控制器输出的碰撞信号一般与继电器控制器断开直接挂钩。电池包内继电器一般有主正、主负、预充继电器和充电继电器,在电池包外还有独立的配电盒对整个电流分配做个更细致的保护。对电池包的继电器控制,闭合、断开的状态以及开关的顺序都很重要。

2)热控制

如前所述,电池的化学性能受环境的温度影响非常大,为了保证电池的使用寿命必须让电池工作在合理的温度范围之内,并根据不同的温度给整车控制器得出其所能输出和输入的最大功率。对于电池系统的温度控制主要用到CFD仿真分析,如前所述的温度传感器这一单元,如何使用最少的传感器来有效的监测整个电池包的温度分布,并将监测信息反馈给电池管理系统和整个电池温度管理系统。如图12,电池模组的热分析结果,图13为某液冷系统的,整车和电池系统的散热和加热系统。

                                    图12 某模组热分析结果
 

                                   图13 电池系统热控制

3)充电控制

电池管理系统的一种主要模式是监控电池系统在充电过程中的电池的需求。在交流系统中,BMS需要实现PWM的控制导引电路的交互;在直流充电过程中,特别需要注意在较高SOC下允许充电的电流。在国标系统中,电池管理系统被要求直接与外部建立通信,交互充电过程中的信息。理论上说,这块功能的设计,可以迁移到不同的模块上,否则电池管理系统的睡眠唤醒机制就会显得有些复杂。

第四部分 通信与故障诊断

1)通信功能

电池管理系统,至少需要给整车控制器发送电池系统的相关信息;在有直流充电的系统之中,特别是在国标系统中需要直接与外部直流充电桩进行通信。在某些时候,可能还有一条备份的诊断和刷新的通信线,用来在主通信失效的情况下做数据传输。

2)故障诊断和容错运行

故障诊断及容错控制在任何控制器当中都是非常重要的部分,电池管理单元的故障会也需要以故障码(DTC)来进行报警,通过DTC触发仪表盘当中的指示灯,在新能源汽车中电池故障也有相应的指示灯来提醒驾驶员。由于电池的危险性,往往需要车联系统直接进行信息传送,以应对突然出现的事故处理。比如当发生事故的时候,当安全气囊弹出,继电器由整车控制器直接切断以后,车联系统通过定位和预警来处理,特别是电池放电。故障诊断包括对电池单体电压,电池包电压,电流,电池包温度测量电路的故障进行诊断,确定故障位置和故障级别,并作出相应的容错控制。

Fail-Safe的容错运行机制,是指车辆在运行过程中遇到错误之后,车辆进行的降级运行处理。事实上,这个功能更像是对以上所有功能降级和备份。

小结:

1)电池管理系统的功能比较复杂,这里抛砖引玉,做个系统性的简述,接下来对乘用车和电动大巴两个内容进行针对性举例和分析。

2)电池系统,做好和做坏,本质还是有很大的差异的,这里也只是给出一些基本的要素,容大家参考。

3)写的比较凌乱,后续把系统分成硬件和软件单独来看的时候,会更清晰一些。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多