分享

月球(地球天然卫星)

 gudian386 2017-11-30

月球是距离地球最近的天体,它与地球的平均距离约为384401千米。它的平均直径约为3476千米,地球直径的3/11。月球的表面积有3800万Km²,还不如亚洲的面积大。月球的质量约7350亿亿吨,相当于地球质量的1/81,月面重力则差不多相当于地球重力的1/6。月面的直径大约是地球的1/4.月球的体积大约是地球的1/49.然而,月球以每年13厘米的速度,远离地球。这就意味着,总有一天月球会离开我们,但需要几十亿年。

轨道运动

月球以椭圆轨道绕地球运转。这个轨道平面在天球上截得的大圆称“白道”。白道平面不重合于天赤道,也不平行于黄道面,而且空间位置不断变化。周期173日。月球轨道(白道)对地球轨道(黄道)的平均倾角为5°09′。

月球自转

月球在绕地球公转的同时进行自转,周期27.32166日,正好是一个恒星月,所以我们看不见月球背面。这种现象我们称“同步自转”,几乎是卫星世界的普遍规律。一般认为是行星对卫星长期潮汐作用的结果。天平动是一个很奇妙的现象,它使得我们得以看到59%的月面。主要有以下原因:

⒈在椭圆轨道的不同部分,自转速度与公转角速度不匹配。

⒉白道与赤道的交角。

月球章动

月球的轨道平面(白道面)与黄道面(地球的公转轨道平面)保持着5.145 396°的夹角,而月球自转轴则与黄道面的法线成1.5424°的夹角。因为地球并非完美球形,而是在赤道较为隆起,因此白道面在不断进动(即与黄道的交点在顺时针转动),每6793.5天(18.5966年)完成一周。期间,白道面相对于地球赤道面(地球赤道面以23.45°倾斜于黄道面)的夹角会由28.60°(即23.45°+ 5.15°) 至18.30°(即23.45°- 5.15°)之间变化。同样地,月球自转轴与白道面的夹角亦会介乎6.69°(即5.15° + 1.54°)及3.60°(即5.15° - 1.54°)。月球轨道这些变化又会反过来影响地球自转轴的倾角,使它出现±0.002 56°的摆动,称为章动。

地月作用

地球与月球互相绕着对方转,两个天体绕着地表以下1600千米处的共同引力中心旋转。月球的诞生,为地球增加了很多的新事物。

月球绕着地球公转的同时,其特殊引力吸引着地球上的水,同其共同运动,形成了潮汐。潮汐为地球早期水生生物,走向陆地,帮了很大的忙。

地球很久很久以前,昼夜温差较大,温度在水的沸点与凝点之间,不宜人类居住。然而月球其特殊影响,对地球海水的引力减慢了地球自转和公转速度,使地球自转和公转周期趋向合理,带给了我们宝贵的四季,减小了温度差,从而适宜人类居住。

地震和月球到底有没有关系?这是近百年来始终困扰科学家的问题。如今,日本防灾科学研究所和美国加州大学洛杉矶分校的研究人员组成的联合研究小组终于证实:月球引力影响海水的潮汐,在地壳发生异常变化积蓄大量能量之际,月球引力很可能是地球板块间发生地震的导火索。10月22日,著名的美国《科学》杂志发表了他们的研究成果。

海水的自然涨落现象就是人们常说的潮汐。当月亮到达离地球近处(我们称之为近地点)时,朔望大潮就比平时还要更大,这时的大潮被称为近地点朔望大潮。

月球

科学家已经就潮汐对地震的影响猜测了很长的时间,但还没有人论证过它对全球范围的影响效果,以前只发现在海底或火山附近,地震与潮汐才呈现出比较清楚的联系。研究者发现,地震的发生与断面层潮汐压力处于高度密切相关,猛烈的潮汐在浅断面层施加了足够的压力从而会引发地震。当潮很大,达到大约2-3米时,3/4的地震都会发生,而潮汐越小,发生的地震也越少。

该文章的作者伊丽莎白.哥奇兰说:“月球引力影响海潮的潮起潮落,地球本身在月球引力的作用下也发生变形。猛烈的潮汐在地震的引发过程中发挥了很大的作用,地震发生的时间会因潮汐造成的压力波动而提前或推迟。”

该文章另一位作者、加州大学洛杉矶分校地球与空间科学系教授约翰.维大说:“地震起因还是一个谜,而这一理论可以说是其中的一种解释。我们发现海平面高度在数米范围内的改变所产生的力量会显著地影响地震发生的几率,这为我们向彻底了解地震的起因迈出了坚实的一步。”

哥奇兰等人首次将潮的相位和潮的大小合并计算,并对地震和潮汐压力数据进行了统计学分析,采用的计算方法来自于日本地球科学与防灾研究所的地震学家田中。田中从1977年至2000年间全球发生的里氏5.5级以上的板块间地震中,调查了2207次被称为“逆断层型”地震发生的地点、时间等记录,以及与发生地震时月球引力的关系,结果发现:地震发生的时间,与潮汐对断层面的压力有很高的关联性,月球引力作用促使断层错位时,发生地震次数较多。

田中认为:“月球的引力只有导致地震发生的地壳发生异常变化的作用力的千分之一左右,但它的作用是不可小视的,它是地震发生的最后助力,相当于压死骆驼的最后一根稻草。”

天秤动

因为月球的自转周期和它的公转周期是完全一样的,所以地球上只能看见月球永远用同一面向着地球。自月球形成早期,地球便一直受到一个力矩的影响导致自转速度减慢,这个过程称为潮汐锁定。亦因此,部分地球自转的角动量转变为月球绕地公转的角动量,其结果是月球以每年约38毫米的速度远离地球。同时地球的自转越来越慢,一天的长度每年变长15微秒。

从地球上看月亮,看到的月球表面并不是正好它的一半,这是因为月球像天平那样摆动。地球上的观测者会觉得:在月球绕地球运行一周的时间里,月球在南北方向来回摆动,即在维度的方向像天平般的摆动,这被称为“纬天平动”,摆动的角度范围约6°57′;月球在东西方向上,即经度方向上来回摆动的现象,被称为“经天平动”,摆动角度达到7°54′。除去这两种主要的天平动,月球还有周日天平动和物理天平动,前三种天平动都并非月球在摆动,是因为观测者本身与月球之间得相对位置发生变化而产生的现象。只有物理天平动是月球自身在摆动,而且摆动得很小。

由于月球轨道为椭圆形,当月球处于近地点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远地点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为天秤动。又由于月球轨道倾斜于地球赤道,因此月球在星空中移动时,极区会作约7度的晃动,这种现象称为天秤动。再者,由于月球距离地球只有60地球半径之遥,若观测者从月出观测至月落,观测点便有了一个地球直径的位移,可多见月面经度1度的地区。

月球对地球所施的引力是潮汐现象的起因之一。月球围绕地球的轨道为同步轨道,所谓的同步自转并非严格。

成因探讨

月球的起源莫衷一是。对月球的起源,历史上大致有三大派。而后期则在各种说法的基础上,结合研究结果而新形成了“碰撞说”,但并未定论。

分裂说

这是最早解释月球起源的一种假设。早在1898年,著名生物学家达尔文的儿子乔治·达尔文就在《太阳系中的潮汐和类似效应》一文中指出,月球本来是地球的一部分,后来由于地球转速太快,把地球上一部分物质抛了出去,这些物质脱离地球后形成了月球,而遗留在地球上的大坑,就是现在的太平洋。这一观点很快就受到了一些人的反对。他们认为,以地球的自转速度是无法将那样大的一块东西抛出去的。再说,如果月球是地球抛出去的,那么二者的物质成分就应该是一致的。可是通过对“阿波罗12号”飞船从月球上带回来的岩石样本进行化验分析,发现二者相差非常远。

俘获说

这种假设认为,月球本来只是太阳系中的一颗小行星,有一次,因为运行到地球附近,被地球的引力所俘获,从此再也没有离开过地球。还有一种接近俘获说的观点认为,地球不断把进入自己轨道的物质吸积到一起,久而久之,吸积的东西越来越多,最终形成了月球。但也有人指出,像月球这样大的星球,地球恐怕没有那么大的力量能将它俘获。

同源说

这一假设认为,地球和月球都是太阳系中浮动的星云,经过旋转和吸积,同时形成星体。在吸积过程中,地球比月球相应要快一点,成为“哥哥”。这一假设也受到了客观存在的挑战。通过对“阿波罗12号”飞船从月球上带回来的岩石样本进行化验分析,人们发现月球要比地球古老得多。有人认为,月球年龄至少应在53亿年左右。

碰撞说

这一假设认为,太阳系演化早期,在星际空间曾形成大量的“星子”,先形成了一个相当于地球质量0.14倍的天体星子,星子通过互相碰撞、吸积而长合并形成一个原始地球。这两个天体在各自演化过程中,分别形成了以铁为主的金属核和由硅酸盐构成的幔和壳。由于这两个天体相距不远,因此相遇的机会就很大。一次偶然的机会,那个小的天体以每秒5千米左右的速度撞向地球。剧烈的碰撞不仅改变了地球的运动状态,使地轴倾斜,而且还使那个小的天体被撞击破裂,硅酸盐壳和幔受热蒸发,膨胀的气体以极大的速度携带大量粉碎了的尘埃飞离地球。这些飞离地球的物质,主要有碰撞体的幔组成,也有少部分地球上的物质,比例大致为0.85:0.15。在撞击体破裂时与幔分离的金属核,因受膨胀飞离的气体所阻而减速,大约在4小时内被吸积到地球上。飞离地球的气体和尘埃,并没有完全脱离地球的引力控制,通过相互吸积而结合起来,形成全部熔融的月球,或者是先形成几个分离的小月球,在逐渐吸积形成一个部分熔融的大月球。

月食现象

月食是一种特殊的天文现象。指当月球行至地球的阴影后时,太阳光被地球遮住。所以每当农历15日前后可能就会出现月食。

也就是说,此时的太阳、地球、月球恰好(或几乎)在同一条直线,因此从太阳照射到月球的光线,会被地球所掩盖。

以地球而言,当月食发生的时候,太阳和月球的方向会相差180°,所以月食必定发生在“望”(即农历15日前后)。要注意的是,由于太阳和月球在天空的轨道(称为黄道和白道)并不在同一个平面上,而是有约5°的交角,所以只有太阳和月球分别位于黄道和白道的两个交点附近,才有机会连成一条直线,产生月食。

分类

月食可分为月偏食、月全食两种。当月球只有部分进入地球的本影时,就会出现月偏食;而当整个月球进入地球的本影之时,就会出现月全食。至于半影月食,是指月球只是掠过地球的半影区,造成月面亮度极轻微的减弱,很难用肉眼看出差别,因此不为人们所注意。

月球直径约为3476千米,地球的直径大约是月球的4倍。在月球轨道处,地球的本影的直径仍相当于月球的2.5倍。所以当地球和月亮的中心大致在同一条直线上,月亮就会完全进入地球的本影,而产生月全食。而如果月球始终只有部分为地球本影遮住时,即只有部分月亮进入地球的本影,就发生月偏食。月球上并不会出现月环食,因为月球的体积比地球小的多。

月球

太阳的直径比地球的直径大得多,地球的影子可以分为本影和半影。如果月球进入半影区域,太阳的光也可以被遮掩掉一些,这种现象在天文上称为半影月食。由于在半影区阳光仍十分强烈,月面的光度只是极轻微减弱,多数情况下半影月食不容易用肉眼分辨。一般情况下,由于较不易为人发现,故不称为月食,所以月食只有月全食和月偏食两种。

另外由于地球的本影比月球大得多,这也意味着在发生月全食时,月球会完全进入地球的本影区内,所以不会出现月环食这种现象。

每年发生月食数一般为2次,最多发生3次,有时一次也不发生。因为在一般情况下,月亮不是从地球本影的上方通过,就是在下方离去,很少穿过或部分通过地球本影,所以一般情况下就不会发生月食。

据观测资料统计,每世纪中半影月食,月偏食、月全食所发生的百分比约为36.60%,34.46%和28.94%。

月球这个炽热的星球形成以后,当月球慢慢冷却,月球表面就形成了一个整体的壳,当这个壳体固定下来,壳体内的岩浆会慢慢冷却收缩,慢慢壳内的岩浆就会和壳体脱离,随着时间的推移,内部就会形成很大的空间,岩浆在壳体内部会自然形成一个球体,由于物体的万有引力,球体的一侧没能和壳体脱离,这样月球就形成一个偏心的球体,随着月球的重心偏离一侧,月球发生快慢自转,快慢转变的能量被月球内部流动的岩浆摩擦吸收,慢慢月球就形成月球的一面朝向地球。

月球探讨月球背面

地球上之所以看到月球的半面,这是因为月球的自转周期和公转周期严格相等?那这到底是巧合还是有着内在的联系呢?

让我们来看看太阳系其它行星的卫星的状况,我们可以发现绝大多数的卫星的自转周期和公转周期严格相等,看来这似乎是存在什么内在联系的。

月球在地球的引力的长期的作用下,月球的质心已经不在它的几何中心,而是在靠近地球的一边,这样的话,月球相对于地球的引力势能就最小,在月球绕地球公转的过程中,月球的质心永远朝向地球的一边,就好像地球用一根绳子将月球绑住了一样。太阳系的其他卫星也存在这样的情况,所以卫星的自转周期和公转周期相等不是什么巧合,而是有着内在的因素。

月球磁场

早期的月球专家表示,月球的磁场很弱或根本没有磁场,而月岩的样品显示它们被很强的磁场磁化了。这对NASA的科学家们又是一次冲击。因为他们以前总是假设月岩是没有磁性的。这些科学家后来发现了月球曾有过磁场,但没有了。

在对美国阿波罗号宇航员从月球上带回的岩石的研究中,科学家们发现,月球周围的磁场强度不及地球磁场强度的1/1000, 月球几乎不存在磁场。但是,研究表明,月球曾经有过磁场,后来消失了。

月球磁场从其诞生之后的5-10亿年开始,直至36-39亿年期间,是有磁场的。但是,当它出现了6-9亿年之后,磁场却突然消失了。地球的磁场起源于地球内部的地核,科学家认为,地核分为内核和外核,内核是固态的,外核是液态的。它的粘滞系数很小,能够迅速流动,产生感应电流,从而产生磁场。也就是说,所有的行星其磁场都是通过感应电流作用才产生的。

对月球表面岩石的分析结果,月球不存在可以产生感应电流作用的内核。相反,所有的证据表明,月球的表面是一个已经溶解的外壳,是由流动的熔岩流体形成的“海”,后来因冷却变成了如今这副模样。最初,几乎所有的天文学者都以为人类在月球上找到了海,其实月球上发暗的部分,正是熔岩流体冷却形成的。那么,磁场到底是从哪里产生的呢?美国加利福尼亚大学地球行星系的思德克曼教授率领的物理学专家组针对这一专题进行了三维模拟试验。经试验,他们终于得出了结论。据该小组介绍:体轻且流动的岩石,形成了熔岩的“海洋”,它们在从下面漂向月球表面的时候,在其表面之下残留了大量的类似钍和铀一样的重放射性元素。这些元素在崩溃时放出大量的热,这些热量就像电热毯一样,加热了月球的内核。被加热的物质与月球的表面形成对流,从而产生了感应电流作用。此时,也就产生了月球磁场。但是,当放射性元素崩溃超越一定时点时,对流现象中止,于是感应电流作用也随之消失。正是由于这样的变化,才最终导致月球磁场的消失。

忒伊亚和月球

太阳系内曾经还有一颗行星,它的名字叫做“忒伊亚”(Theia),在《地球的力量》;纪录片中被译为《提亚》科学家推测称这颗行星与地球发生碰撞才形成现今的月球。美国宇航局发射的两个宇宙探测器计划搜寻忒伊亚的残骸物质,进而揭示月球的神秘起源之谜。

人类登月

第一个到达月球的人造物体是前苏联的无人登陆器“月球2号”,它于1959年9月14日撞向月面。“月球2号”在同年10月7日拍摄了月球背面的照片。“月球9号”则是第一艘在月球软着陆的登陆器,它于1966年2月3日传回由月面上拍摄的照片。“月球10号”于1966年3月31日成功入轨,成为月球第一颗人造卫星。

在冷战期间,美国和前苏联一直希望在太空科技领先对方。这场太空竞赛在1969年7月19日第一名人类登陆月球时进入高潮。美利坚合众国“阿波罗11号”的指令长尼尔·阿姆斯特朗是踏足月球的第一人,“阿波罗11号”的太空人留下了一块9英寸乘7英寸的不锈钢牌匾在月球表面,以纪念这次登陆及为有可能发现它的其他生物提供一些资料。尤金·塞尔南则是最后一个站立在月球上的人,他是1972年12月“阿波罗17号”任务的成员。

6次的阿波罗号任务及3次无人月球号任务(月球16、20、24号)把月球上的岩石及土壤样本带回地球。

在2004年2月,美国总统乔治·沃克·布什提出于2020年前派人重新登月。欧洲航天局及中国亦有计划发射探测器前往月球。欧洲的“Smart 1”探测器于2003年9月27日升空,并于2004年11月15日进入绕月轨道。它将会勘察月球环境及制作月面X射线地图。

中华人民共和国亦积极开展探月计划,并寻求开采月球资源的可行性,尤其是氦同位素氦-3这种有望成为未来地球能源的元素。有关中华人民共和国探月计划,见嫦娥工程条目。

日本及印度亦不甘人后。日本已初步订出未来探月的任务。日本的宇宙航空研究开发机构甚至已着手计划的有人的月球基地。印度则会先发射无人绕月探测器“Chandrayan”。

欧洲希望在月球上建立一个“诺亚方舟”,将地球物种的基因存储起来,当地球遭遇核战争危机或小行星撞击时,人类的生命可以得到延续。欧航局将在2020年前分4个阶段进行月球探测,计划在2012年将宇航员送上月球,2025年完成永久性月球基地建设。计划耗资:约890亿元人民币。

第一个登月的人

尼尔·奥尔登·阿姆斯特朗(Neil Alden Armstrong) 1930年8月5日生于俄亥俄州瓦帕科内塔。1955年获珀杜大学航空工程专业理学硕士学位。1949-1952年在美国海军服役(飞行驾驶员)。1955年进入国家航空技术顾问委员会(即后来的国家航空和航天局)刘易斯飞行推进实验室工作,后在委员会设在加利福尼亚的爱德华兹高速飞行站任试飞员。1962年至1970年在休斯敦国家航空和航天局载人宇宙飞船中心任宇航员。1966年3月为“双子星座-8”号宇宙飞船特级驾驶员。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多