分享

加上“MS”的气相究竟“高大上”了多少?——聊聊GC-MS与GC的异同

 Jack_cn 2018-02-23

质谱听起来好像总要比色谱高大上一点,可是质谱的应用却不能离了色谱,随着分析方法的改进,GC-MS越来越多的成为主流分析检测仪器应用到实际分析检测与科研领域,今天我们就来说说这加了质谱的气相色谱与一般的气相色谱有什么异同。

GC-MS联用仪和气相色谱仪的主要区别

GC-MS联用后,气相色谱仪部分的气路系统和质谱仪的真空系统几乎不变,仅增加了接口的气路和接口真空系统。


GC-MS联用后,整机的供电系统不仅变化不大。除了向原有的气相色谱仪、质谱仪和计算机及其外设各部件供电以外,还需向接口及其传输线恒温装置和接口真空系统供电。


气质联用法和其他气相色谱法作一简单比较,可见如下一些性能和操作上的区别。

1GC-MS方法定性参数增加,定性可靠。GC-MS方法不仅与GC方法一样能提供保留时间,而且还能提供质谱图,由质谱图、分子离子峰的准确质量、碎片离子峰强比、同位素离子峰、选择离子的子离子质谱图等使GC-MS方法定性远比GC方法可靠。


2GC-MS方法是一种通用的色谱检测方法,但灵敏度却远高于GC方法中的通用检测器中任何一种。GC方法中常用的只有FIDTCD是通用检测器,其余都是选择性检测器,与检测样品中的元素或官能团有关。


3)虽然用气相色谱仪的选择性检测器能对一些特殊的化合物进行检测,不受复杂基质的干扰,但难以用同一检测器同时检测多类不同的化合物而不受基质的干扰。而采用色质联用中的提取离子色谱、选择离子检测等技术可降低化学噪声的影响,分离出总离子图上尚未分离的色谱峰。在色质联用技术中,高分辨质谱的联用仪检测准确质量数、串联质谱(时间串联或空间串联)的选择反应检测或选择离子子离子检测均能在一定程度上降低化学噪音,提高信噪比。


4)从气相色谱和色质联用的一般经验来说,质谱仪定量似乎总不如气相色谱仪,但是,由于色质联用可用同位素稀释和内标技术,以及质谱技术的不断改进,色质联用仪的定量分析精度极大改善。在一些低浓度的定量分析中,接近多数气相色谱仪检测器的检测下限时,色质联用仪的定量精度优于气相色谱仪。


5)气相色谱方法中的大多数样品处理方法、分离条件、仪器维护等都要保持,移植成为色质联用的方法。在色质联用中选择衍生化试剂时,要求衍生化物在一般的离子化条件下能产生稳定的,适合的质量碎片。


6)气相色谱法中,经过一段时间的使用,某些检测器需要清洗。在色质联用中检测器不常需要清洗,最常需要清洗的是离子源或离子盒。离子源或离子盒是否清洁是影响仪器工作状态的重要因素。柱老化时不联接质谱仪,减少注入高浓度样品,防止引入高沸点组分,尽量减少进样量,防止真空泄露、返油等是防止离子源污染的方法。气相色谱工作时的合适温度参数均可以移植到色质联用仪上,其他各部件的温度设置要注意防止出现冷点否则色谱分辨率将会恶化。

定性定量区别

常规GC定性方法有标准样对照法和文献值对照法。标准样对照法主要是根据保留值进行定性,需要具备已知标准物,将样品和标准物在同一根色谱柱上,用相同色谱条件进行分析,获得二者色谱图后进行对照定性定量分析;或在样品中加标准样,比较色谱峰变化,来进行定性分析。


文献值对照法进行定性,主要是利用相对保留值和保留指数,用文献中给出的色谱条件包括所用相同固定相及色谱柱规格、柱温程序等来分析未知样品,然后计算出保留指数值进行对照分析。这两种方法均需要有已知标准物质或文献报道值,需事先知道所分析的化合物类型,而且仅靠保留时间定性的准确度不高,受很多因素影响,还需要其他方法加以确证,如多柱定性、或质谱验证。


而GC-MS联用中,MS作为GC的检测器,通过GC对混合物组分进行分离,然后MS将样品电离转化为运动的气态离子并按质荷比(m/z)大小进行分离并记录其信息的分析方法。不仅提供了色谱峰的保留时间,还提供了质谱图信息,如分子离子、功能团离子、离子峰强比和同位素离子峰簇等,还可利用SIM或MS/MS功能,获得离子反应的母离子-子离子质量数对、选择离子色谱峰和选择反应色谱峰所对应的保留时间窗等。通过对质谱图的解析,无需标准物质或参考文献亦可对GC分离的组分进行定性结构分析,特异性、灵敏度高。


GC定量依据是组分含量与色谱峰面积成正比。GC-MS定量分析方法类似于色谱法定量分析。由GC-MS得到的总离子色谱图或质量色谱图,其色谱峰面积与相应组分含量成正比,若对某一组份进行定量测定,可以采用色谱分析法中的归一化法、外标法、内标法等。这时,GC-MS法可理解为将质谱仪为色谱仪GC的检测器,其余均与色谱法相同。


与GC定量不同的是,GC-MS法不仅靠保留时间定性可以利用总离子色谱图进行定量外,还可利用提取质量色谱图进行定量,这样可以最大限度地去除其它组份干扰。值得注意的是,质量色谱图是用一个或几个质量数的离子提取出的,它的峰面积与总离子色谱图有较大差别,因此在进行定量分析过程中,标准物质和样品峰面积和校正因子等必须都要用相同的质量数色谱图。


为了提高检测灵敏度、减少其它组分的干扰,GC-MS定量分析中常用选择离子扫描方式。对于待测组分,选择一个或几个特征离子进行扫描,若相邻组份不存在这些离子,这样得到的色谱图中待测组份就不存在干扰,有很高的灵敏度和准确度。用选择离子扫描方式得到的色谱图进行定量分析,具体分析方法与质量色谱图类似,但由于在扫描记录时就扣除了背景干扰信息,其灵敏度比利用全扫描提取质量色谱图高,这是GC-MS定量分析中常用的方法。

GC-MS优势及缺点

(1)GC作为进样系统,将待测样品分离后直接导入质谱进行检测,既满足了质谱分析对样品单一性的要求,又省去样品制备、转移的繁琐过程,不仅避免了样品受污染,对质谱进样量还能有效控制,也减少了质谱仪的污染,极大地提高了对混合物分离、定性定量效率。


(2)定性能力高。用色谱保留时间结合化合物的指纹质谱图鉴定组分,大大优于仅靠色谱保留时间。质谱作为检测器,检测的是离子质量,获得化合物质谱图,解决了气相色谱定性的局限性,由于不同化合物的质谱图不一样,因此质谱既是一种通用型检测器,又是有选择性的检测器,可以说GC-MS全扫描方式是最通用的、灵敏度极高的色谱检测,而选择离子和二级质谱扫描方式是最可变的、最具有选择性的、最高灵敏度的色谱选择性检测,所以应用时优于其他色谱检测器,常被作为最终确证方法。


(3)可分离尚未分离的色谱峰。用提取离子、选择离子监测或选择反应监测法,以及结合某些数据处理方法(如AMDIS),可分离总离子流色谱图上尚未分离或被化学噪音掩盖的色谱峰。


(4)可提高定量分析精度。通过用同位素稀释和内标技术可提高定量精度和定性能力。


(5)GC-MS的不足在于:分析对象限于在300℃左右及以下可以汽化、并且能离子化的样品;在加热过程中易分解的、极性太强的化合物,如有机酸类等,则需进行酯化衍生处理才可进行GC-MS分析,如果样品不能气化也不能酯化则需采取LC-MS或其他方法分析;GC-MS分析样品应是有机溶液,固体或水溶液中的有机物一般不能测定,需进行萃取分离变为有机溶液,或采用热裂解、顶空进样技术。另外,目前质谱还一个很重要的不足是对很多异构体(尤其是位置异构)是无法分辨。

质谱之家

气相色谱之家

液相色谱之家


    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多