分享

常见不等式恒成立问题的几种求解策略

 李润之 2018-04-02
下面内容已自动转化,以便于移动设置阅读
常见不等式恒成立问题的几种求解策在历年各省市的数学高考试题中,我们不难发现:不等式恒成立问题是历年高考的热点问题,经久不衰.不等式恒成立问题常常在知识网络交汇点处设置,它可以与主干知识如函数、导数、数列、三角函数、解析几何等整合在一起,里面又涉及到不等式证明问题和参数取值范值问题,渗透着化归、数形结合等重要数学思想,有效地检测中学生对中学数学知识中蕴涵的数学思想和方法的掌握程度,考查了综合、灵活运用知识的能力.所以,高考将其作为考查学生分析、解决问题的能力和创新意识的重要题型往往出现在压轴题中,很多学生望而却步.,本结合解题教学实践举例说明几种常见不等式恒成立问题的求解策略,以抛砖引玉。变量转换策略例1 已知对于任意的a∈[1,1],函数f(x)=ax2+(2a-4)x+3-a>0 恒成立,求x的取值范围.解析 本题按常规思路是分a=0时f(x)是一次函数,a≠0时是二次函数两种情况讨论,不容易求x的取值范围。因此,我们不能总是把x看成是变量,把a看成常参数,我们可以通过变量转换,把a看成变量,x看成常参数,这就转化一次函数问题,问题就变得容易求解。令g(a)=(x2+2x-1)a-4x+3在a∈[-1,1]时,g(a)>0恒成立,则,得.点评 对于含有两个参数,且已知一参数的取值范围,可以通过变量转换,构造以该参数为自变量的函数,利用函数图象求另一参数的取值范围。零点分布策略例2 已知,若恒成立,求a的取值范围.解析 本题可以考虑f(x)的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点在区间的右侧三种情况,即Δ≤0或或,即a的取值范围为[-7,2].点评 对于含参数的函数在闭区间上函数值恒大于等于零的问题,可以考虑函数的零点分布情况,要求对应闭区间上函数图象在x轴的上方或在x轴上就行了.函数最值策略 例3 已知,若恒成立,求a的取值范围. 解析 本题可以化归为求函数f(x)在闭区间上的最值问题,只要对于任意.若恒成立或或,即a的范围为.点评 对于含参数的函数在闭区间上函数值恒大于等于或小于等于常数问题,可以求函数最值的方法,只要利用恒成立;恒成立.本题也可以用零点分布策略求解.变量分离策略 例4 已知函数,若在区间上,的图象位于函数f(x)的上方,求k的取值范围.解析 本题等价于一个不等式恒成立问题,即对于恒成立,式子中有两个变量,可以通过变量分离化归为求函数的最值问题. 对于恒成立对于恒成立,令,设,则,即x=1时, k的取值范围是k>2.变式 若本题中将改为,其余条件不变,则也可以用变量分离法解.由题意得,对于恒成立对于恒成立,令,设,则,,, k的取值范围是k>. 点评 本题通过变量分离,将不等式恒成立问题转化为求函数的最值问题,本题构造的函数求最值对学生来说有些难度,但通过换元后巧妙地转化为“对勾函数”,从而求得最值. 变式题中构造的函数通过换元后转化为“二次函数型”,从而求得最值.本题也可以用零点分布策略和函数最值策略求解. 数形结合策略例5 设函数,,若恒有成立,试求实数a的取值范围. 解析 由题意得,令,②.①可化为它表示(2,0)为圆心2 为半径的上半圆;表示经过定点(-2,0),以a为斜率的直线,要使恒成立,只需所表示的半圆在所表示的直线下方就可以了(如图所示)当直线与半圆相切时就有即由图可知要使恒成立,实数a的取值范围是点评 消元转化策略 例6 已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若,若对于所有的恒成立,求实数t的取值范围. 解析 本题不等式中有三个变量,因此可以通过消元转化的策略,先消去一个变量,容易证明f(x)是定义在[-1,1]上的增函数,故 f(x)在[-1,1]上的最大值为f(1)=1,则对于所有的恒成立对于所有的恒成立,即对于所有的恒成立,令,只要,.点评 对于含有两个以上变量的不等式恒成立问题,可以根据题意依次进行消元转化,从而转化为只含有两变量的不等式问题,使问题得到解决.以上介绍的几种常见不等式恒成立问题的求解策略,只是分别从某个侧面入手去探讨不等式中参数的取值范围。事实上,这些策略不是孤立的,在具体的解题实践中,往往需要综合考虑,灵活运用,才能使问题得以顺利解决。xyO

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多