分享

土壤微生态研究思路

 萌小芊 2018-06-13

在昨天推送的《中国土壤微生物组:进展与展望》有提到,当前中国土壤微生物组研究的前沿热点包括:


土壤微生物多样性形成与维持机制 

  • 土壤微生物多样性的理论与认知

  • 土壤微生物多样性的起源与演化

  • 土壤微生物多样性的共存机制

 

土壤元素循环的微生物驱动机制 

  • 土壤关键元素循环的微生物作用机理

  • 土壤关键过程的微生物生理驱动机制

  • 土壤微生物组功能变异的环境驱动机制

 

土壤微生物组的资源与环境功能 

  • 土壤微生物组的资源潜力

  • 土壤微生物组介导的地上-地下耦联机制

  • 土壤微生物介导的食物网络结构及功能

 

土壤微生物组的新技术及应用 

  • 土壤微生物组学技术

  • 土壤微生物组原位表征技术

  • 土壤微生物组资源调控技术

当然文中也对未来(2025年前后)我国土壤微生物组的战略目标进行的展望

  • 土壤微生物组与医疗健康

  • 土壤微生物组与农业生产

  • 土壤微生物组与环境保护

  • 土壤微生物组与全球变化

  • 土壤微生物组与跨学科研究

  • 土壤微生物组与联网平台

一般个体研究单位、机构由于资金、团队的限制无法涉足如此众多领域,因此针对于个体土壤微生态的研究方向常常聚焦在如下层面:


从最基础的微生物群落调查到具体的某一生境环境中微生物群落变化的驱动因素,再到统生态群落中不同群体的互作关系,研究的深度和层次适用于不同研究阶段的土壤微生态科研工作者。


下面我们我们就这些方向做研究分析思路的详细介绍:







 参考文献

[1]  Freedman Z, Zak D R. Soil bacterial communities are shaped by temporal and environmental filtering: evidence from a long-term chronosequence[J]. Environmental microbiology, 2015, 17(9): 3208-3218.

[2]  Žifčáková L, Větrovský T, Howe A, et al. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter[J]. Environmental microbiology, 2016, 18(1): 288-301.

[3]  Hill R, Saetnan E R, Scullion J, et al. Temporal and spatial influences incur reconfiguration of Arctic heathland soil bacterial community structure[J]. Environmental microbiology, 2015.

[4]  Zhou J, Deng Y, Shen L, et al. Temperature mediates continental-scale diversity of microbes in forest soils[J]. Nature Communications, 2016, 7.

[5]  Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier[J]. The ISME journal, 2016.

[6]  Cardenas E, Kranabetter J M, Hope G, et al. Forest harvesting reduces the soil metagenomic potential for biomass decomposition[J]. The ISME journal, 2015, 9(11): 2465-2476.

[7]  Hultman J, Waldrop M P, Mackelprang R, et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes[J]. Nature, 2015, 521(7551): 208-212.

[8]  Zhang X, Johnston E R, Liu W, et al. Environmental changes affect the assembly of soil bacterial community primarily by mediating stochastic processes[J]. Global change biology, 2016, 22(1): 198-207.

[9]  McCalley C K, Woodcroft B J, Hodgkins S B, et al. Methane dynamics regulated by microbial community response to permafrost thaw[J]. Nature, 2014, 514(7523): 478-481.

[10] Tas Prestat E, McFarland J W, et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest[J]. The ISME journal, 2014, 8(9): 1904-1919.

[11] Yan X, Luo X, Zhao M. Metagenomic analysis of microbial community in uranium-contaminated soil[J]. Applied microbiology and biotechnology, 2016, 100(1): 299-310.

[12] Shahi A, Aydin S, Ince B, et al. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach[J]. Ecotoxicology and environmental safety, 2016, 125: 153-160.

[13] Xiao K Q, Li L G, Ma L P, et al. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents[J]. Environmental Pollution, 2016, 211: 1-8.

[14] Goordial J, Davila A, Greer C W, et al. Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert[J]. Environmental microbiology, 2016.

[15] Ortiz M, Neilson J W, Nelson W M, et al. Profiling bacterial diversity and taxonomic composition on speleothem surfaces in Kartchner Caverns, AZ[J]. Microbial ecology, 2013, 65(2): 371-383.

[16] Ortiz M, Legatzki A, Neilson J W, et al. Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave[J]. The ISME journal, 2014, 8(2): 478-491.

[17] Mobberley J M, Khodadad C L M, Visscher P T, et al. Inner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling[J]. Scientific reports, 2015, 5.

[18] Ruvindy R, White III R A, Neilan B A, et al. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics[J]. The ISME journal, 2016, 10(1): 183-196.


    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多