分享

高中物理:带电粒子在电场中的圆周运动

 昵称47813312 2018-09-08

带电粒子在电场中的运动轨迹为一段圆弧(或在电场中作圆周运动),处理此类问题时,常利用牛顿第二定律和圆周运动规律结合去求解;如果题目还涉及物体由圆上一点运动到另一点,还需借助能量观点(例动能定理)补充方程联立求解。

等效类比法是物理学中的常用方法。用等效类比的方法,可将复杂的物理情景转化为简单、熟悉的情景,如果你掌握了等效类比的方法,就能大大提高处理复杂问题的能力。当然电场和重力合成为等效重力场是有条件的,即重力和电场力都必须是恒力。

例、质量为m、带电荷量为+q的小滑块,在竖直放置的光滑绝缘圆形轨道内侧运动,轨道半径为r。现在该区域加一竖直向下的匀强电场,场强为E,为使滑块在运动中不离开圆形轨道,则滑块在轨道最低点的速度应满足什么条件?

解析:滑块在圆形轨道内侧运动时,它受到的重力G与电场力F均是恒力,这样可将它们的合力当作一个等效的重力,此重力大小为,方向仍竖直向下。所以滑块在电场中的这种运动就与力学中滑块在竖直圆形轨道内侧运动的情形就完全相同了。而滑块在运动中不离开圆形轨道有两种运动可能:

(1)滑块能做完整的圆周运动。如图所示,由力学中的模型可知,只要滑块能通过轨道的最高点B,就能做完整的圆周运动,而滑块刚好能通过B点时,轨道对滑块的弹力刚好为零,设此情形下滑块在轨道的最高点B与最低点A的速度大小分别为,则在B点,由牛顿第二定律有:

滑块由A→B,由动能定理有:

解得

(2)滑块仅在A点两侧沿圆轨道往复运动,此时它在圆形轨道上运动的最高点为C(或D)点,且。设此情形下,滑块在A的速度设为,滑块由A点运动到C点,由动能定理有:

解得

由上面分析可知,为使滑块在运动中不离开圆形轨道,滑块在最低点的速度应满足的条件为:

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多