分享

开尔文与玻尔兹曼常数

 人老颠东 2018-11-20


在日常生活中,我们对温度的感知通常来自于比较:一个物体相对于某种物理性质或某种参考物的冷热程度,例如“穿暖和点,外面的水都结冰了!”或者“我女儿发烧了,39.5度。”


相比之下,热力学温度就是衡量一个物体所拥有的平均总内能的绝对度量,也就是它的动能(运动的能量)加上从其他因素中获得的能量。


18世纪的时候,法国物理学家Guillaume Amontons在研究空气的“弹力”时发现,相比于温暖的空气,冷却的空气对液体的推力更小,他因此推想,或许存在一种极低的温度,在这个温度下,就连空气都会失去弹力。这个“无限冷”的想法让许多物理学家着迷,1848年,开尔文勋爵发表了题为《论绝对温标》的论文,指出绝对零度事实上是-273摄氏度


国际单位制中的热力学温度(绝对温度)的单位以开尔文勋爵的名字命名为开尔文(K)绝对温标与摄氏温标使用相同的刻度间隔,只是绝对温标并不是将零点任意地设定为水结冰的温度,而是设定为物质可能具有的最低温度。


 不同温度的物体会发出不同颜色的光。例如,红红的蜡烛光大约为1850K,晕黄的白炽灯大约为2800K,白色的日光大约为5000K。| 图片来源:Wikipedia


水的三相点


从1954年起,1K 就被定义为水的三相点的热力学温度273.16K的1⁄273.16水的三相点是水的三种相(状态)——液态水、固态冰、水蒸气同时共存、处于平衡态时的温度。对于有着特定组成的水,在特定的大气压强下,三相点总是出现在恰好相同的温度:273.16K


然而,如何精确测量水的三相点温度呢?第一步自然是制造出同时稳定存在的水、冰和水蒸气的混合物。首先,在装置中央的管道通入干冰,让周围的水冷却结冰;因为这些冰最初存在缺陷和张力,会影响温度,所以需要冷却一段时间。然后,在测量前,向中央的管道中插入处于室温的玻璃等设备,让包裹的冰的最内层略微融化,这样冰层就能够在周围自由转动。这时,就可以用标准铂电阻温度计测量水的三相点温度了。


 测量水的三相点温度的方法。| 图片来源:NIST


从水的三相点温度外推到更宽广的温度范围是有问题的。因此,我们需要许多其他的点来共同校准温度,比如金的凝固点(1337.33 K)、氧的三相点(54.3584 K)等。


然而,测量水的三相点需要使用的水必须具有特定的组成,水中氢和氧的同位素有着严格的比例要求每1mol 1H中含有0.00015576 mol 的2H,每1mol 16O中含有0.0003799 mol的1017O,每1mol 16O中含有0.0020052 mol 的18O。


 测量水的三相点时使用的水具有非常严格的要求。| 图片来源:NIST


因为我们不可能制备出具有完全相同组成的水的混合物,随着设备的不同,热力学温度的测量不可避免地会出现微弱的差别。那么,我们有更好的办法来定义热力学温度吗?


11月16日,在第26届国际度量衡大会中,1K被重新定义:


1.380649×10-23 J / kB


其中kB玻尔兹曼常数,它的数值为1.380649 × 10-23J·K-1(焦耳每开尔文


玻尔兹曼常数


那么,什么是玻尔兹曼常数?又如何精确测量玻尔兹曼常数呢?简短的答案就是,玻尔兹曼常数是将物质的动能(E)和它的温度(T)联系起来的常数:E=kBT。(玻尔兹曼常数是热力学中不可或缺的工具,它是以统计力学的先驱之一——奥地利物理学家路德维格·玻尔兹曼的名字命名的。)


热力学温度描述的是一群原子和亚原子粒子(例如一块铁中的原子,一个房间里的空气分子)的平均能量,表示为绝对零度以上几个开尔文。


 平移运动:气体中的原子和分子沿着各个方向飞速移动,彼此碰撞,也与容器壁碰撞反弹。| 图片来源:Sean Kelley/NIST


通常,大多数物体的动能包含在平移动能里,也就是物体在空间平行移动具有的能量。气体中的原子和分子沿着各个方向飞速移动,彼此碰撞,也与容器壁碰撞反弹。单个原子和分子的移动速度不同,但是对于某个确定温度下的大量原子和分子,它们的速度可以通过统计和概率的方法来描述,结果表明,粒子的速度(能量)和数量分布遵循所谓的麦克斯韦-玻尔兹曼分布。这意味着,大多数粒子分布在一段特定的速度区间里。


 粒子的速度和粒子的数量分布遵循麦克斯韦-玻尔兹曼分布

 粒子的速度和粒子的数量分布遵循麦克斯韦-玻尔兹曼分布。| 图片来源:Curt Suplee/NIST

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多