分享

郑 燕:初中数学教学中的“鱼渔”观

 昵称32901809 2019-02-04

《中国创新教育》杂志选编 王宇推荐

初中数学教学中的“鱼渔”观

郑 燕

古人云:授之以鱼不如授之以渔。这句话体现在我们的数学教学中也就是数学思想方法的渗透,这就要求我们教师能在实际的教学过程中不断地发现、总结、渗透数学思想方法。从表相抽象出实质,能起到“举一反三,触类旁通”的作用。

一、渗透分类讨论的思想方法,培养学生全面观察事物、灵活处理问题的能力

当被研究的问题包含多种可能的情况不能一概而论时,就要按照可能出现的各种情况进行分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法就是分类讨论思想。

在渗透分类讨论思想的过程中,我认为首要的是分类。要能培养学生分类的意识,然后才能在其基础上进行讨论。我们仔细分析教材的话应该不难发现,教材对于分类的渗透是一直坚持而又明显的。比如在《走进数学》中,数正方形的个数问题。用分类思想避免数重复或者数遗漏。而在学生的思维品质上则有利于培养学生的思维严谨性与逻辑性。

我认为在渗透分类讨论思想的时候,我们还可以从学生已有的生活经验出发,紧密联系学生的生活实际、学习实际。

一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态,另一方面可培养学生思维的灵活性,加速体现了分类的思想方法。

在《平面图形的认识(一)》这一章中有这样一道题:已知平面上三个点A、B、C,过其中每两点画直线共可以画几条?若平面上A、B、C、D四点呢?试分别画图说明。

分析:过平面上三点画直线有两种情况:(1)三点共线时,只能画一条直线;(2)三点不共线时,可画三条直线;过平面上四点画直线有三种情况:(1)四点共线时,只能画一条直线;(2)四点中有三点共线时,可画四条直线;(3)四点中任意三点都不共线时,可画六条直线。

这些题目都能很好的体现分类思想,在平时的训练中,我们要多通过这类题的解答,渗透着分类讨论的思想。通过分类讨论,既能使问题得到解决,又能使学生学会多角度、多方面去分析、解决问题,从而培养学生思维的严密性、全面性。

二、渗透数形结合的思想方法,提高学生的数形转化能力和迁移思维的能力

数形结合思想是指将数与图形结合起来解决问题的一种思维方式。著名的数学家华罗庚曾经说过:“数缺形时少直观,形少数时难入微。”这就是在强调把数和形结合起来考虑的重要性。把问题的数量关系转化为图形的性质,或者把图形的性质转化为数量关系,可以使复杂问题简单化、抽象问题具体化。

在教材《有理数》里面用数轴上的点来表示有理数,就是最简单的数形结合思想的体现,结合数轴表示有理数,能帮助学生较好地理解有理数的绝对值、相反数等概念,以及进行两个有理数的大小比较。这样非常直观形象,便于学生理解。

郑 燕:初中数学教学中的“鱼渔”观

再如对平方差公式和完全平方公式的推导,容易发现,把图形和数量结合起来,这种巧妙的结合可以使一些问题获得直观形象的解决。

所以,我们一定要通过课堂的教学、习题的讲解使学生充分地理解数中有形、形中有数、数形是紧密联系的,从而得到数形之间的对应关系,并引导学生应用数形结合的思想方法学习数学知识、解决数学问题。

三、渗透化归思想,提高学生解决问题的能力

所谓“化归”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。这体现了研究科学的一种基本思路,即把“不熟悉”迁移到“熟悉”的路子上去。我们也常把它称之为“转化思想”。化繁为简,化陌生为熟悉,化未知为已知,可以说化归思想在数学教学中是贯穿始终的。

例如:在教材《有理数的减法》、《有理数的除法》这两节内容中,实际上教材是通过“议一议”形式使学生在自主探究和合作交流的过程中,让学生经历把有理数的减法、除法转化为加法、乘法的过程,体验、学会并熟悉“转化一求解”的思想方法。我们可以注意到教材在出示了一组例题后,特别用卡通人语言的形式表明“减法可以转化为加法”、“除法可以转化为乘法”、“除以一个数等于乘以这个数的倒数”。这在主观上帮助了学生在探索时进行转化的过程,而在学生体会到成功后客观上就渗透了学生化归的思想。值得注意的是这个地方虽然很简单,但我们教师不能因为简单而忽视它,实践告诉我们往往是越简单浅显的例子越能引来人们的认同,所以我们不能错过这一绝佳的提高学生的思维品质的机会。再如教材《走进图形世界》,它实际上是“空间与图形”的最基本部分。教材在编排设计上是围绕认识基本几何体、发展学生空间观念展开的,在过程上是让学生经历图形的变化、展开与折叠等数学活动过程的,在活动中引导学生认识常见的几何体以及点、线、面和一些简单的平面图形;通过对某些几何体的主视图、俯视图、左视图的认识,在平面图形与立体图形的转化中发展学生的空间观念。在《七(上)教师教学参考资料用书》中,教材在设计思路上明确提出本章内容的处理方法是“先空间、后平图,再通过展开与折叠、从三个方向看数学活动进行平面图形与立体图形的转化。”这就要求我们必须在授课过程中注意图形的化归思想渗透。我个人认为在实际操作中,因为大部分学生在小学时就积累一定的感性处理方法,我们要注意的就是将其上升为理论高度,甚至于作出一般性的总结,如“在初中阶段绝大部分立体图形的问题都可以转化为平面图形的问题。”又如解分式方程转化为解整式方程,解“二元”方程转化为解“一元”方程,解多边形问题转化为解三角形问题等等。

四、渗透方程思想,培养学生数学建模能力

方程思想指借助解方程来求出未知量的一种解题策略。运用方程思想求解的题目在中考试题中随处可见。同时,方程思想也是我们求解有关图形中的线段、角的大小的重要方法。

我们知道方程是刻画现实世界的一个有效的数学模型。所以方程思想实际上就是由实际问题抽象为方程过程的数学建模思想。我们在以前老教材中经常会提到三种模型,即方程模型、不等式模型、函数模型。实际上就是今天所说的建模的思想。那么这样看来,方程就是第一个出现的数学基本模型。所以方程思想的领会与否直接关系到数学建模能力的大小。因此说我们对学生进行方程思想的渗透,就是对学生进行数学建模能力的培养,这对我们学生以后的学习都有着深远的影响。

五、渗透从特殊到一般的数学思想方法,加强学生创造性思维的形成和创新能力的培养

从特殊到一般的数学思想方法,即先观察一些特殊的事例,然后分析它们共同具有的特征,作出一般的结论。

新《数学课程标准》指出要发展学生的符号感,其中符号感的一个主要表现是要求学生能从具体情境中抽象出数量关系和变化规律,并用符号来表示,而列代数式是实现这一目标的具体途径。

如用字母表示数,这是中学生学好代数的关键一步,要跨越这一步是有一定的困难的。从算术到代数,思维方式上要产生一个飞跃,有一个从量变到质变的发展过程,学生始终认为“-a是负数”,“两个数的和大于其中任何一个加数”等,这样就要求我们在教学中不断渗透从特殊到一般的数学思想方法,不断强化,逐步完成学生从数到式,由普通语言到符号语言,由特殊到一般,由具体到抽象的飞跃。

在教学中我们先用特殊的具体数字总结出规律,再用一般的字母来表示。在这个过程中,并没有直接把结果“抛”给学生,而是让学生去探索、交流、归纳,经历从特殊到一般的知识形成过程,既促进了学生创造性思维的形成,也培养了学生的创新能力。

新《数学课程标准》中说“有效的数学学习过程不能单纯地依赖模仿与记忆,教师应引导学生主动地从事观察、实验、猜测、验证、推理与交流等数学活动”,所以无论是从特殊到一般的数学知识的归纳形成过程,还是从一般到特殊的数学知识的验证应用过程,教师作为合作者、引导者,都应该提供足够时间和空间,让学生主动去从事各种数学活动,只有这样才能突出学生的主体地位,获得明显的教学效果。

所以说从某种意义上讲,数学思想方法的教学甚至比传授知识更重要,这就是“授之授之以鱼不如授之以渔”的道理。因为思维的锻炼不仅对学生在某一学科上有益,更使其终生受益。站在“以学生发展为本”的角度上看,在教学中适时适度渗透数学思想方法将对培养学生可持续发展的能力有极大的好处,正适合现在方兴未艾的“素质教育”,其教学潜在价值更是不可估量的。

《中国创新教育》杂志、创新教育视界祝:

老师们、同学们、家长们,全网工作人员、创作者、阅读者春节快乐!身体健康,猪年好运!

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多