分享

广义估计方程(GEE)

 雨中漫步看太阳 2019-03-01
一、问题与数据

在临床研究中,经常会比较两种治疗方式对患者结局的影响,并且多次测量结局。例如,为了研究两种降压药物对血压的控制效果是否存在差异,研究者会对两个人群服药后在不同时间点记录血压值,然后评价降压效果。或者对两组动物分别施加两种干预,连续记录多个时间点的结局,然后比较两种干预的效果。

这种设计可以用如下示意图表示:

另外,有时研究只需要收集一个时间点的数据,但是一个研究对象会提供多个部位的数据点。例如,研究者想评价冠心病患者在冠脉搭桥术后应用阿司匹林是否可以有效降低患者血管的再堵塞,评价的方法是术后1年做冠脉造影观察血管是否堵塞,但是每个患者可能会在同一次手术中对多条冠状动脉血管进行搭桥,因此有的患者可能会贡献多组数据。

这种设计可以用如下示意图表示:

以上两种设计,不管是临床试验还是动物试验都非常常见,它的特点在于数据间非独立,同一个体间数据具有相关性。对于这样的设计类型,该如何分析呢? 

今天我们来介绍另外一种非常好的方法——广义估计方程(GEE)。GEE既可以处理连续型结局变量也可以处理分类型结局变量,它实际上代表了一种模型类别,即在传统模型的基础上对相关性数据进行了校正,可以拟合Logistic回归、泊松回归、Probit回归、一般线性回归等广义线性模型。

本文将以阿司匹林预防冠脉搭桥后血管再堵塞为例介绍运用SPSS进行GEE的操作方法。以下为数据格式:

表1. 数据格式

每名患者贡献数据量不等。如编号为1的患者只对一根血管进行了搭桥手术,编号为2的患者则有两根血管进行搭桥手术。

表2. 变量赋值

(注:本例中数据纯属虚构,分析结果不能产生任何结论。性别为待调整变量。)

 
二、SPSS操作
请先登录
这么重要的内容,赶快登录查看吧!
登录
三、结果解释
请先登录
这么重要的内容,赶快登录查看吧!
登录
四、撰写结论

冠脉搭桥术后患者应用阿司匹林可以有效降低发生血管堵塞的风险。服用阿司匹林组患者发生血管堵塞风险是服用安慰剂组患者的0.341倍(P=0.046)。

 
五、延伸阅读

对于文首提及的两个例子,常见的分析方法有重复测量方差分析和多水平模型,但是重复测量方差分析要求结局变量为连续变量,不适用于分类变量。多水平模型处理相关性数据时非常灵活,结局可以为连续变量,也可以为分类变量,应用非常广泛。

GEE的应用似乎没有前两种广泛,但其具有非常好的特性。GEE既可以处理连续型结局变量也可以处理分类型结局变量,其优势在于,即使设定的数据间相关结构与实际有偏差,在样本量较大时其模型估计参数仍然具有无偏性。GEE模型中自变量系数估计值准确性的论证相较于多水平模型更加充分,因此部分研究者更加推荐使用GEE。

虽然GEE模型中数据间相关结构指定错误时模型系数也具有无偏性,但前提是样本量要足够大。在同样的样本量下,正确的相关结构更可能得到准确的参数估计和置信区间,因此应仔细分析数据类型,选择最可能正确的相关结构。

关于GEE的内容较为复杂,在此无法详述,对GEE有兴趣的读者或需要使用GEE模型的读者,推荐阅读专业书籍和文献。

六、更多阅读

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多