分享

第二章 粘附分子

 潇湘剑客WJH 2019-04-07

粘附分子(adhesionmolecules)是指由细胞产生、存在于细胞表面、介导细胞与细胞间或细胞与基质间相互接触和结合的一类分子。粘附分子大多为糖蛋白,少数为糖脂,分布于细胞表面或细胞外基质(extracellular matrix,ECM)中。粘附分子以配体一受体相对应的形式发挥作用,导致细胞与细胞间、细胞与基质间或细胞-基质-细胞之间的粘附,参与细胞的信号转导与活化、细胞的伸展和移动、细胞的生长及分化、炎症、血栓形成、肿瘤转移、创伤愈合等一系列重要生理和病理过程。

对于细胞间相互接触、粘附的现象人们早有认识。80年代以后,由于单克隆抗体技术和分子生物学技术的发展和应用,极大地推动了对粘附分子的研究,使人们得以从分子水平上提出粘附分子的概念,并逐渐认识其作用机理。目前已基因克隆成功的粘附分子有几十种,形成一个庞大的粘附分子大家族。由于粘附分子所具有广泛、重要的生物学功能功能,目前在细胞生物学、分子生物学、免疫学、病理生理学、肿瘤学以及其它生命科学领域里已受到人们普遍的关注,1993年第五届人白细胞分化抗原国际专题讨论会上,已将粘附分子单独列为一组新抗原。本章主要介绍粘粘附分子的种类和结构、粘附分子表达的调节、粘附分子的功能以及可溶性粘附分子等内容。

第一节 粘附分子的种类和结构

目前按粘附分子的结构特点可将其分为以下四类:(1)粘合素家族(integrin family)的粘附分子;(2)免疫球蛋白超家族(immunoglobulin superfamily,IGSF)的粘附分子;(3)凝集素家族(selectin family);(4)钙离子依赖的细胞粘附素家庭(Ca2+-dependent cell adhesion molecule family)的粘附分子或称Cadherin。此外还有一些其它未归类的粘附分子。

一、粘合素超家族

国内将integrin译为粘合素、整合素等,本书暂命名为粘合素。integrin是最初在1986年提出的概念,描述一个膜受体家族,此家族的粘附分子主要介导细胞与细胞外基质的粘附,使细胞得以附着而形成整体(integration),故得名。此外,粘合素家族的粘附分子还介导白细胞与血管内皮细胞的粘附。

integrin分子的结构(示意图)

图2-1 integrin分子的结构(示意图)

注:a .integrin分子电镜下所见(模式图),黑区部分显示integrin分子α、β亚单位所 组成的球部,为配体结合域;

b.integrin分子的结构模式图,显示出α亚单位的二价阳离子(Mg2+)结合区和α、 β亚单位的重复序列。

(一)粘合素分子的基本结构

粘合素家族的粘附分子都是由α、β两条链由非共价键连接组成的异源双体(heterodimer),α、β链均为Ⅰ类穿膜蛋白。α链的分子量为120~210kKa,β链的分子量为90~130kDa,个别β链(如β4)分子量为220kDa。不同的α链(或称α亚单位)或β链(或称β亚单位)氨基酸序列有不同程度的同源性,在结构上有其共同的特点。α和β亚单位均由胞膜外区、胞浆区、穿膜区三部分组成。胞浆区一般较短,可能和细胞骨架相联。空膜区富含疏水氨基酸。β亚单位的胞膜外区含有4个富含半胱氨酸的重复序列,靠近外侧N端的40~50kDa的氨基酸残基通过链内二硫键紧密折叠在一起;α亚单位的胞膜外部分有7个同源重复序列,靠近外侧N端的3个或4个重复序列中含有Asp-X-Asp-X-Asp-Gly-X-X-Asp或类似结构,与integrin分子结合二价阳离子(Mg2+)有关,并与β亚单位共同构成粘合素分子的配体结合部位,其中α亚单位的二价阳离子结合区与 integrin分子配体结合的特异性和亲和力有关。某些integrin分子的α亚单位在转录后被剪接为两段,一段为劳作膜部分,较小,约20~30kDa;另一段为胞膜外部分,较大,两者通过二硫键连接起来(图2-1)。电镜下可见integrin分子有一个球状头部,向下伸展有两条杆状结构穿过细胞膜的磷脂双层。

(二)粘合素超家族的组成

目前已知至少有14种α亚单位和8种β亚单位,除α7和αIEL外,其它粘合素分子亚单位均已基因克隆成功。α亚单位和β亚单位组合构成粘合素分子并不是随机的,多数α亚单位只能与一种β亚单位结合构成异源双体,但也有的α亚单位可与几种不同的β亚单位组合,如αV(CD51)可分别同β1、β3、β5、β6和β8亚单位组成integrin分子,而大部分β单位则可以结合数种不同的α亚单位。目前按β亚单位的不同可将粘合素家族分为8个不同的组,在同一组中的粘合素分子不同成员β链相同,α链不同。已知α链和β链有20种组合形式(表2-1),β1、β3、β4、α3和α6等亚单位的mRNA分子可有不同的剪接形式,更增加了粘合素分子的多样性。

(三)粘合素分子的分布

粘合素分子的体内分布很广泛,多数粘合素分子可以表达于多种组织细胞,如VLA组的粘合素分子在体内广泛分布于各种细胞细胞;而多数细胞可同时表达数种不同的粘合素分子,对体外哺乳动物来源的细胞系粘合素分子表达研究发现,每一种细胞系可同时一有达2~10种不同的粘合素分子,但不同类型的细胞表达粘合素分子的种类是不同的。某些粘合素分子的表达则具有明显的细胞类型特性,如gpⅡb/Ⅲa(Ⅱb/β3)主要表在宾巨核细胞和血小板;LAF-1、Mac-1、P150/95只表达在白细胞表面;α6β4特异性表达在上皮细胞。每一种细胞粘合素分子的表达可随其分化与生长状态的改变而变化。

(四)粘合素分子识别配体的短肽序列

粘合素分子在与配体结合时所识别的只是配体分子中由数个氨基酸组成的短肽序列。不同的粘合素分子可能识别相同的短肽序列或同一个配体中不同的短肽序列。由于同一短肽序列可以存在于几种不同的配体中,因此,每一种粘合素分子可能有几种细胞外间质成分做为配体,而每一种细胞外间质中的配体也可能被几种不同的粘合素分子所识别。

1.识别RGD序列的粘合素分子 α5β1、αvβ1、αⅡbβ3、αvβ3、αvβ5、αvβ6都可以识别配体分子中的RGD序列,多种细胞外间质成分(包括FN、VN、FB、vWF)都含有RGD序列,它们在体内的分布极为广泛。含有RGD序列的人工合成肽可以抑制上述粘合素分子与配体的结合。

2.识别非RGD序列的粘合素分子 α2β1、α4β1、αxβ2、αⅡbβ3、α4β7可分别识别其配体分子中DGEA、EILDV、GPRP、KQAGDV、EILDV等短肽序列,其中KQAGDV具有与RGD类似的结构。上述短肽序列可以与RGD序列在于同一个配体分子中,如FN分子中同时存在RGD和EILDN序列。

表2 -1 integrin家族及其相应配体

分组成员α/β亚单位分子量(kDa)亚单位结构分布配体结合位点
VLA组

(β1组)

VLA-1210/130(CD49a/CD29)α1β1广泛CA,LM 
VLA-2165/130

(CD49b/CD29)

α2β1广泛CA,LMDGEA
VLA-3135+25/130

(CD49c/CD29)

α3β1广泛FN,LM,CARGD?
VLA-4150/130

(CD49d/CD29)

α4β1白细胞MoFN,VCAM-1EILDV
VLA-5(FNR)135+25/130

(CD49e/CD29

α5β1广泛FNRGD
VLA-6(LNR)120+30/130

(CD49f/CD29

α6β1广泛LM 
α7β1 α7β1 LM 
α8β1 α8β1  
VNR-β1150/130

(CD51/CD29

αvβ1 VN,FNRGD
白细胞粘

附受体组

(β2组)

LFA-1180/95

(CD11a/CD18)

αLβ2白细胞ICAM-1

ICAM-2

ICAM-3

 
Mac-1165/95

(CD11b/CD18)

αMβ2吞噬细胞大颗粒细胞C3bi,FB

X因子,

ICAM-1

 
P150,95150/95

(CD11c/CD18

αXβ2吞噬细胞大颗粒细胞FB,C3biGPRP
血小板糖

(β3组)

gpⅡbⅢa120+24/105

(CD41/CD61)

αⅡbβ3血小板En,Mo,

PMN

FB,FN,vWF

Thr,

RGD

KQAGDV

VNR-β3125+24/105

(CD51/CD61)

αvβ3广泛VN,FB,

vWE,Thr

FN,CA

RGD
β4组α6β4120+30/105

(CD49f/CD104)

α6β4表皮细胞LM 
β5组VNR-β5125+25/110

(CD51/-)

αvβ5广泛VN,FNRGD
β6组αvβ6125+25/106

(CD51/-)

αvβ6 FNRGD
β7组α4β7

(LPAM-1)

150/-

(CD49d/-)

α4β7

αIELβ7

 FN,VCAM-1

?

EILDV
β8组αvβ8150/-

(CD51/-)

αvβ8 ? 

注:FN(fibronectin,纤粘连蛋白)

LM(lamnin,层粘连蛋白)

Thr(thrombospondin,血栓海绵蛋白)

VLA(very alte appearingantigen,很晚出现的抗原)

CA(collagen,胶原蛋白)

VN(vitronectin,玻璃粘连蛋白)

FB(fibronogen,血纤维蛋白)

vWF(von Willebrand factor,von Willebrand 因子)

RGD:Arg-Gly-Asp(精-甘-天冬)

KQAGDV:Lys-Gln-Ala-Gsp-Val(赖-谷氨酰胺-丙-甘-天冬-缬)

DGEA:Asp-Gly-Glu-Ala(天冬-甘-谷-丙)

GPRP:Gly-Pro-Arg-Pro(甘-脯-精-脯)

EILDV:Glu-Ile-Leu-Asp-Val(谷-异亮-亮-天冬-缬)

ICAM-1:intercellular adhesion molecule-1,细胞间粘附分子-1

ICAM-2:intercellular adhesion molecule-2,细胞间粘附分子-2

ICAM-3:intercellular adhesion molecule-3,细胞间粘附分子-3

VCAM-1:vasccular cell adhesion molecule-1,血管细胞粘附分子-1

IEL:intraepithelial lymphocyte, 上皮内淋巴细胞

LPAM-1:leukocyte platelet adhesion molecule-1,白细胞血小板粘附分子-1

3.识别序列尚未明确的粘合素分子 包括α1β1、α6β1、α7β1、α8β1、αLβ2、αMβ2、α6β4、αIELβ7、αvβ8等。

(五)纤维粘连蛋白

integrin分子的配体包括多种细胞外基质成份,其中纤粘连蛋白(fibronectin,FN)与β1、β3、β5、β6和β7等多组integrin分子受体结合,对细胞的生长、分化、活化、移动等过程具有重要的调节作用。

FN的分子量约为550kDa,由α、β两条多肽链构成,两条链在羧基端以二硫键相连。α链和β链的氨基酸组成和结构相似,α链略长。FN由成纤维细胞、血管内皮细胞、巨噬细胞等合成和分泌,通常以两种形式存在:(1)血浆FN,以二聚体形式存在,含量可高达300μg/ml;(2)存在于结缔组织有关的基底膜及多种细胞表面,为多聚体。两种形式的FN结构有所差异。不同种属的FN具有高度同源性,分子中均含有三类同源重复序列,每类重复序列有其特定的肽链折叠方式。①Ⅰ型重复序列(type I repeat):由约45个氨基酸残基构成,分布于FN分子的氨基端和羧基端;②Ⅱ型重复序列(type Ⅱ repeat):由约60个氨基酸组成,插入氨基端Ⅰ型重复序列之间;③Ⅲ型重复序列(type Ⅲ repeat):由约90个氨基酸构成,分布于肽链的中间部分(图2-2)。

不同细胞来源的FN分子结构亦略有差异,这是由于mRNA水平上不同的剪接方式造成的,表现为(1)分子中两个特定位置上Ⅲ型重复序列的存在或缺如;(2)位于FN分子羧基端的可变片段,全长为120个氨基酸残基;不同细胞来源的FN分子多肽链中具有此片段的全部或其中某一部分(图2-2)。在人体内其它分子中也可发现FN分子Ⅰ、Ⅱ、Ⅲ型重复序列的同源序列,如凝血因子Ⅻ分子中有Ⅰ型同源重复序列,凝血酶原中有Ⅱ型同源重复序列,IL-6受体胞外部分含有Ⅲ型同源重复序列。

纤粘连蛋白分子结构模式图

图2-2 纤粘连蛋白分子结构模式图

纤维粘连蛋白分子可以结合多种分子,如胶原蛋白、肝素、血纤维蛋白及细胞表面受体,其中与细胞表面受体的结合主要是通过纤粘连蛋白分子中的RGD序列。

二、免疫球蛋白超家族

在参与细胞间相互识别、相互作用的粘附分子中,有许多分子具有与IgV区或C区相似的折叠结构,其氨基酸组成也有一定的同源性,属于免疫球蛋白超家族(immunoglobulin superfamily, IGSF)的成员。有关免疫球蛋白超家族分子的结构特点和基因结构参见第三章。免疫球蛋白超家族粘附分子的种类、分布及其配体见表2-2。免疫球蛋白超家族粘附分子的配体多为免疫球蛋白超家族的粘附分子或粘合素家族的分子。

有关CD2、CD4、CD8、CD28和CD58分子的结构和功能参见第一章“人白细胞分化抗原”,MHCⅠ类抗原和Ⅱ类抗原参见第六章“主要组织相容性复合体”。本节将简要介绍ICAM和VCAM-1分子的结构。

1.ICAM-1(intercellular adhesion molecule-1) ICAM-1是最早发现的免疫蛋白超家族粘附分子之一,以后又相继发殃了ICAM-2和ICAM-3,它们的免疫球蛋白结构域氨基酸序列具有同源性,且都可以结合LFA-1分子。不同的ICAM分子在体内的分布范围有较大差异,ICAM-1分子分布广泛,如淋巴结和扁桃体血管内皮细胞,胸腺树突状细胞,扁桃体和肾小球上皮细胞,白细胞,巨噬细胞和成纤维细胞等,IL-1、TNF-α、IFN和LPS可促进ICAM-1分子的表达;ICAM-2则分布较局限,主要表达的血管内皮细胞;而ICAM-3只表达在血细胞。ICAM-1分子为单链跨膜糖蛋白,核心多肽为55kDa,由于不同种类细胞上ICAM-1分子所含寡糖分子数有所差别,ICAM-1分子量可在80~11kDa范围。ICAM-1分子胞膜外部分具有5个免疫球蛋白样结构域,第2和第3结构域之间有一段连接序列,富含脯氨酸,类似免疫球蛋白的绞链区,可发生扭曲。以此连接区为界,氨基端的D1和D2结构域可结合LFA-1分子和鼻病毒,而羧基端侧的D3结构域可以结合Mac-1分子(图2-3)。ICAM-2和ICAM-3胞膜外部分分别有2个和5个免疫球蛋白结构域,ICAM-2分子2个结构域与ICAM-1N端2个结构域有34%同源性,ICAM-1D1结构域中结合LFA-1分子具有关键作用。

ICAM-1分子的结构(模式图)

图2-3 ICAM-1分子的结构(模式图)

表2-2 免疫球蛋白超家族(IGSF)粘附分子的种类、分布和识别配体

IGSF粘附分子分 布分子量(kDa)配 体
LFA-2(CD2)T细胞,胸腺细胞,大颗粒淋巴细胞50LFA-3(IHSF)
LFA-3(CD58)广泛40~65LFA-2(IHSF)
ICAM-1(CD54)广泛80~114LFA-1(integrin)
ICAM-2(CD102)内皮细胞60LFA-1(integrin)
ICAM-3(CD50)外周血静止白细胞140/108LFA-1(integrin)
CD4抑制细胞诱导亚群,辅助细胞诱导亚群55MHC-Ⅱ(IGSF)
CD8抑制性T细胞,杀伤性T细胞32/36MHC-Ⅰ(IGSF)
MHC-Ⅰ广泛44/12CD8(IGSF)
MHC-ⅡB细胞,活化T细胞,活化内皮细胞,巨噬细胞32~34/29~32CD4(IGSF)
CD28T细胞44B7/BB1(IGSF)
B7/BB1(CD80)活化B细胞,活化单核细胞60CD28(IGSF)
NCAM-1(CD56)神经元,胚胎细胞,NK120,140,180NCAM-1(IGSF)
VCAM-1(CD106)内皮细胞,上皮细胞,树突细胞,巨噬细胞100,110VLA-4(integrin)
PECAM-1(CD31)白细胞,血小板,内皮细胞140PECAM-1(IGSF)

注:LFA:淋巴细胞功能相关抗原

VCAM:血管细胞粘附分子

NCAM:神经细胞粘附分子

ICAM:细胞间粘附分子

PECAM:血小板内皮细胞粘附分子

的氨基酸序列,并同样具有结合LFA-1分子的功能。

其它部分免疫球蛋白超家族粘附分子的结构将在本书有关章节中介绍。

2.VCAM-1(vascular cell adhesion molecule-1)血管细胞粘附分子,又称诱导性细胞粘附分子(vascular cell adhesion ,INCAM),意指在IL-1、TNF-α等细胞因子活化的血管内皮细胞上表达,分子量100kDa或110kDa,最近命名为CD106,VCAM-1的配体是分布在白细胞表面的VLA-4分子。

三、selectin家族

selectin家族最初被称为外源凝集素细胞粘附分子家族(lectin cell adhesion moleculefamily,LEC-CAM family).selectin是由select和lectin两词合并而来,目前国内尚无统一译法,选择凝集素一词似较为妥当。

(一)selectin分子的基本结构

selectin分子为Ⅰ型穿膜的糖蛋白,可分为胞膜外区、穿膜区和胞浆区。selectin家族各成员胞膜外部分有较高的同源性,结构类似,均由三个结构域构成。(1)其外侧氨基端(约120个氨基酸残基)为钙离子依赖的C型外源凝集素结构域(calcium dependent lectin domain),可以结合碳水化合物基团,是selectin分子的配体结合部位;(2)紧邻外源凝集素结构域是表皮生长因子样结构域(epidermal growth factor-like domain),约含35个氨基酸残基,EGF样结构域虽不直接参加配体的结合,但对维持selectin分子的构型是必需的;(3)近胞膜部分是数个由约60个氨基酸残基构成的补体调节蛋白(complement regulatory protein)重复序列或称为补体结合蛋白(complementbinding protein)重复序列,它们与补体受体(如CR1、CR2等)和C4结合蛋白(C4bp)等结构同源。各种selectin分子的穿膜区和胞浆区没有同源性(见图2-4)。selectin分子的胞浆区与细胞内骨架相联,去除胞浆部分的selectin分子虽仍可结合相应配体,却失去其介导细胞间粘附的作用。

(二)selectin家族的组成

目前已发现selectin家族中有三个成员:L-selectin、P-selectin和E-selectin,L、P和E分别表示leukocyte,platelet和endothelium,是最初发现相应selectin分子的三种细胞,故得名。selectin家族成员的细胞分布和相应配体见表2-3。

selectin分子的结构模式图

图2-4 selectin分子的结构模式图

表2-3 selectin 家族的组成、分布及其相应配体

selectin家族成员分布分子量(kDa)配体
L-selectin(CD62L,LECAM-1)白细胞75~80PNAd
LAM Mel14(小鼠)  S-Lewisx
P-selectin血管内皮细胞,血小板140S-Lewisx
(CD62P,GMP-140,PADGEM)(凝血酶、组胺、白三烯刺激后从α颗粒内与质膜融合而表达在细胞表面) CD15
E-selectin(CD62E,ELAM-1)血管内皮细胞(主要在毛细血管后静脉,IL-1,TNF活化后表达)115S-Lewisx

S-Lewisx

CLA

注:LECAM:leukocyteendothelial cell adhesion molecule,白细胞内皮细胞粘附分子

PNAd:peripheral lymphonode vascular addressin,外周淋巴结血管地址素

LAM:leukocyte adhesion molecule,白细胞粘附分子

GMP-140:granule membrane protein-140,颗粒膜蛋白-140

PADGEM:plateletactivation-dependent granule external membrane,血小板活化 依赖性颗粒外膜

ELAM-1:endothelial leukocyteadhesion molecule-1,内皮细胞白细胞粘附分子-1

CLA:cutaneous lymphocyte associated antigen,皮肤淋巴细胞相关抗原

(三)selectin分子识别的配体

与其它粘附分子不同,selectin分子识别的配体都是一些寡糖基团。目前对于这种特殊的受体一配体结合的研究主要采用以下几种方法:(1)抗寡糖决定簇特异性单克隆抗体阻断试验;(2)外源性寡糖分子阻断试验;(3)纯化的内源性寡糖结合试验;(4)特异糖基转移酶改变相应寡糖结构后其结合能力的改变。在研究中可同时采用不同的实验方法从不同的角度分析以期获得正确的结论。迄今为止发现的selectin分子的配体都是具有唾液酸化的路易斯寡糖(Sialyl-Lewis)或类似结构的分子(图2-5)。与蛋白质分子抗原不同,直接决定细胞表面某种寡糖表达的因素是与某些特定的糖基转移酶或碳水化合物修饰酶的作用有关,这些酶的作用可能与细胞的生长与代谢状态有着密切的关联。一种寡糖基团可以存在于多种糖蛋白或糖脂分子上,并分布于多种细胞表面,因此selectin分子的配体在体内的分布较为广泛。如CD15分子可存在于LFA-1、Mac-1 、CR1等不同的糖蛋白分子上,白细胞、血管内皮细胞、某些肿瘤细胞表面及血清中某些糖蛋白分子上都存在有selectin分子识别的碳水化合物基团。

路易斯寡糖的结构

图2-5 路易斯寡糖的结构

注:Gal:半乳糖 Fuc:岩藻糖 Glc:葡萄糖 NAc:N乙酰基 NeuAc:唾液酸

selectin分子对寡糖结构识别的特异性是相对的,它往往可以结合与其特异配体结构类似的寡糖,只是结合的亲和力较低。如P-selectin不仅可以结合CD15分子(lacto-N-fucopen-taose,LNFⅢ的一种异构体LNFⅡ。

四、Cadherin家族

Takeichi最早发现一种介导细胞间相互聚集的粘附分子,在有Ca2+存在时可以抵抗蛋白酶的水解作用,以后又发现两种作用和特性均与其类似的粘附分子,它们的氨基酸序列也有同源性,遂将其命名为Cadherin(Ca2+dependent cell adhesion molecules family)家族。Cadherin家族的粘附分了对于生长发育过程中细胞的选择性聚集具有至关重要的作用。

(一)Cadherin分子的结构

Cadherin分子均为单链糖蛋白,约由723~748个氨基酸构成,不同的Cadherin分子在氨基酸水平上有43~58%的同源性。Cadherin分子为Ⅰ型膜蛋白,由胞膜外区、穿膜区和胞浆区三部分组成。胞膜外区有数个重复结构域,并含有由4~5个氨基酸残基组成的重复序列,近膜部位另有4个保守的半胱氨酸残基,分子外侧N端的113个氨基酸残基构成Cadherin分子的配体结合部位。此外胞膜外部分具有结合钙离子的作用(图2-6)。Cadherin分子的胞浆区高度保守,并与细胞内骨架相连,靠近C端的一半对于Cadherin分子介导的细胞粘附可能具有重要作用,去除此部分的Cadherin分子虽可与配体结合却丧失介导细胞间粘附的作用。推测是由于Cadherin分子与细胞内骨架相连,当Cadherin分子胞膜外区与相应配体结合后,向胞浆内部分传递信号,导致胞浆区与细胞骨架相接,稳定胞膜外区与配体的结合,发挥细胞粘附功能。

Cadherin分子的结构模式图

图2-6 Cadherin分子的结构模式图

注:图中黑区部分显示Cadherin分子内重复结构域;LDRE及DXNDN为重复序列。

(二)Cadherin家族的组成和分布

目前已知Cadherin家族共有3个成员:E-Cadherin、N-Cadherin和P-Cadherin。E-Cadherin也被称作Uvomorulin、L-CAM或Cell-CAM120/80。不同的Cadherin分子在体内有其独特的组织分布,它们的表达随细胞生长、发育状态不同而改变。

表2-4 Cadherin家族的组成、分布及其配体

Cadherin家族成员分子量(kDa)主要分布组织配体
E-Cadherin124上皮组织E-Cadherin
N-Cadherin127神经组织、横纹肌、心肌N-Cadherin
P-Cadherin118胎盘、间皮组织、上皮细胞P-Cadherin

(三)Cadherin分子识别的配体

Cadherin分子以其独特的方式相互作用,其配体是与自身相同Cadherin分子(图2-7)。以这种方式相互作用的粘附分子除Cadherin家族的粘附分子外,还有属于免疫球蛋白超家族的CD31(PECAM)和CD56(NCAM)。

Cadherin分子相互作用的模式图

图2-7 Cadherin分子相互作用的模式图

五、其它未归类的粘附分子

除了上述四类粘附分子外,还有一些粘附分子目前尚未归类,包括一组做为selectin分子配体的寡糖决定簇或载有这类寡糖决定簇的糖蛋白,如CD15、S-Lewisx、S-Lewisa;此外还有CD44、MAd、MLA等粘附分子。

(一)selectin分子结合的配体

1.CD15 CD15主要分布在粒细胞表面,是Lewis寡糖的异构体。在第五届白细胞分化抗原国际会议上,将唾液酸化的CD15命名为CD15s。S-Lewisx和S-Lewisa是唾液酸化的路易斯寡糖,两者互为异构体,S-Lewisx主要分布在白细胞、血管内皮细胞及某些肿瘤表面,S-Lewisa主要表达的某些肿瘤细胞。上述寡糖决定簇与多肽连接形成多种糖蛋白存在于某些细胞表面。

2.PNAd和CLA selectin分子的配体还包括有另外一些细胞表面的糖蛋白,包括PNAd和CLA。PNAd(peripheral lymphonode addressin)是表达在外周淋巴结高静脉内皮细胞表面的一组糖蛋白,可与特异性抗L-selectin分子配体的单克隆抗体MECA-79发生反应,分子量在50~200kDa之间,分子上载有唾液酸化的寡糖决定簇。CLA(cutaneous lymphocyte associated antigen)是表达在定向归位于皮肤炎症部位的记忆T细胞表面的一种糖蛋白,分子上存在类似S-Lewisx结构的寡糖决定簇,可与血管内皮细胞表达的E-selectin分子相结合。唾液酸酶处理可以去除PNAd、CLA与selectin分子的结合活性。

(二)CD44

1.CD44分子的结构和分布CD44是一种细胞表面糖蛋白,又称Pgp-1、Ly-24、细胞外基质受体Ⅲ(ECM-RⅢ)和Hermes。CD44分子的基因在转录时可取用不同的外显子使在mRNA水平上有不同的拼接方式,翻译后糖基化的方式和程度也可以不同,导致成熟的CD44分子有多种变异体,按其分子量的不同可大致分为80~90kDa、110~160kDa和180~215kDa三类,每种变异体有其相应的组织分布。仅由组成性外显子编码的氨基酸序列组成的CD44分子称为标准CD44分子(CD44S),有314个氨基酸,其中胞膜外区248个氨基酸,跨膜区21个氨基酸,胞浆区72个氨基酸,核心蛋白分子量为37.2kDa,经糖基化后为80~90kDa,与硫酸软骨素结合后分子量可达180~200kDa。CD44分子胞膜外区靠近N端约100氨基酸范围内有6个Cys,组成三个二硫键,形成一个球形结构,能被Hermes-1、KM-201单抗所识别,可能具有与透明质酸结合的功能。胞膜外有6个N-连接糖基化位点和7个O连接糖基化位点,此外还有4个硫酸软骨素连接位点。Hermes-3McAb识别CD44152~235间的84氨基酸肽段,此区域含有许多亲水氨基酸,折叠后暴露于分子的外侧,Hermes-3McAb能阻断CD44(淋巴细胞)与粘膜HEV上的地址素结合。CD44分子上的硫酸软骨素介导CD44与纤维连蛋白结合。CD44还可与细胞外基质胶原蛋白Ⅰ和Ⅳ及层粘蛋白结合。

CD44分子分布十分广泛,如T细胞、胸腺细胞、B细胞、粒细胞、神经胶质细胞、成纤维细胞和上皮细胞等。

CD44分子的结构

图2-8 CD44分子的结构

注:●- N-连接的糖基化位点

○- ○-连接的糖基化位点

* 硫酸软骨素连接位点

2.CD44分子的变异体CD44多种变异体主要是由于CD44分子基因的不同拼接方式和翻译后不同修饰所造成的。

(1)CD44分子基因的不同拼接方式:人CD44基因定位于11号染色体短臂上,CD44基因有20个高度保守的外显子,每个外显子的长度从70bp到210bp不等,被长短不一的内含子所分隔。CD44基因的外显子按表达方式不同可分为以下两类:①10个组成型外显子(C1~C10),转录片段存在于所有CD44转录产物中。仅由组成型外显子编码的氨基酸序列组成的CD44分子称为标准CD44分子(CD44S)。体内造血细胞(haemopoietic cell)主要表达糖基化的CD44S,称为标准CD44H。②10个变异性拼接外显子(V区外显子,V1~V10),总长为1245bp。这10个V区外显子介于第5和第6个组成型外显子之间(图2-9),其转录产物位于CD44S分子第222个密码子的第一和第二个核苷酸之间。V区外显子可以多种不同的方式进行拼接。参加拼接的V区外显子可多可少,从而产生了不同大小的转录产物。人CD44基因中只有V2~V10外显子,不含V1外显子。含有V区外显子编码的氨基酸序列的CD44分子称为CD44V,目前发现的CD44V有10余种,如CD44V(V2~V10)、CD(V8~V10)、CD44V(V4~V7)、CD44V(V6、V7)、CD44V(V6)等。

(2)CD44分子的翻译后修饰:CD44分子是一种高度糖基化的蛋白,其翻译后修饰包括N-糖基化、O-糖基化和硫酸软骨素侧链的连接。CD44分子中组成性外显子和V区处显子的编码序列均含有糖基化位点和硫酸软骨素侧链的连接位点。CD44分子的胞膜外区N端部分有5个N-糖基化位点,另有一个N-糖基化位点位于近胞膜部位。CD44分子胞膜外区近胞膜部位富含丝氨酸和苏氨酸,是O-连接糖基化位点,在此区域内还存在有丝氨酸-甘氨酸二聚肽结构,被认为是硫酸软骨素连接位点(图2-8)。含V区外显子编码序列的CD44分子经糖基化后分子量可达110~160kDa,而CD44分子与硫酸软骨素分子的连接可使其分子量达180~215kDa。

CD44分子的基因结构

图2-9 CD44分子的基因结构

3.CD44分子的主要功能CD44是细胞表面的粘附分子,主要参与细胞-细胞,细胞-基质之间的粘附。

(1)CD44分子的配体为细胞外基质,主要有透明质酸、层粘连蛋白、纤粘连蛋白和胶原蛋白等多种配体,不同的CD44分子识别的配体有所差别。如85kDa的CD44分子可结合透明质酸分子的硫酸软骨素侧链可与纤粘连蛋白羧基末端的肝素结合区结合。因此连接有硫酸软骨素侧链的CD44分子可以结合纤粘连蛋白。

(2)CD44分子作为淋巴细胞“归巢”受体(lymphocyte homing receptor)与高内皮静脉(HEV)结合,参与淋巴细胞归位到淋巴组织。

(30)参与T细胞的活化,抗CD44抗体可促进T细胞对抗CD2和CD3抗体的应答,某些抗CD44抗体可提高CD2/LFA-3依赖的T细胞与单核细胞的粘附作用。

(4)与细胞骨架蛋白结合,参与细胞伪足形成和迁移运动。CD44分子胞浆区丝氨酸和苏氨酸磷酸化后,与细胞膜内侧的锚蛋白(ankyrin)结合的亲和力增加,通过锚蛋白与细胞骨架发生连接。

粘膜型地址素(Med)和外周淋巴结型地址素(PNAd)将在本章第三节中加以介绍。

第二节 粘附分子的表达的调节

如前所述,细胞粘附分子不仅具有多种生理功能,在一定条件下也与病理过程的发生密切相关。在细胞因子、炎症介质以及其它因素的作用下,细胞表面粘附分子表达的水平和构型可以发生改变,导致细胞粘附能力的变化。体内某些粘附分子的表达是组成性(constitutive)的,即通常状态下细胞表面就有一定水平的表达,如CD11/CD18、ICAM-1、ICAM-2和L-selectin等粘附分子在相应细胞的静止状态下有一定水平的表达,在某些因素的作用下,这些粘附分子的表达也可发生上调或下调(up-regulation ordown-regulation)。另外一些粘附分子的表达可以是非组成性(non-consititutive)的,即通常状态下这些粘附分子在细胞表面表达很少或不表达,但在某些因素的作用下可诱导表达,如E-selectin、VCAM-1在内皮细胞的表达即属此类。对粘附分子表达的调节有构型调节和表达数量调节两种方式,目前关于粘附分子表达调节的资料大多来自于对白细胞与内皮细胞粘附作用的研究。

一、粘附分子构型改变影响细胞的粘附作用

除了通过增加或降低粘附分子表达水平来调节细胞粘附能力外,某些因素还可以通过改变粘附分子的构型影响其与配体结合的亲和力,从而调节细胞的粘附能力,这使得对细胞粘附作用的调节更为精细和复杂。

(一)LFA-1分子构型改变对其粘附作用的影响

淋巴细胞在受到外来抗原,PMA,抗CD2、CD3、CD44、CD43或抗MACⅡ类分子单克隆抗体的刺激作用活化后,可发生相互凝集,这种凝集作用依赖于LFA-1/ICAM-1的相互作用,而这两种粘附分子在活化淋巴细胞的表达水平并没有显着增加。静止淋巴细胞即表达一定水平的LFA-1和ICAM-1,NK细胞和某些CTL细胞系更是表达较高水平的LFA-1/ICAM-1分子,但它们并不发生凝集作用。上述事实提示在淋巴细胞活化后,粘附分子可能通过构型变化的方式,提高LFA-1/ICAM相互作用的亲和力,从而提高活化淋巴细胞的粘附能力。

1.NKI-L16和活化状态的LFA-1分子 NKI-L16是一种抗LFA-1的单克隆抗体,其识别的表位在静止淋巴细胞暴露的水平很低。当NKI-L16McAb与淋巴细胞表面的LFA-1作用后,不仅不阻断LFA-1介导的粘附作用,反而可以诱导静止淋巴细胞的相互粘附而使细胞发生凝集。这种诱导粘附作用的机理部分是由NKI-L16McAb改变了LFA-1分子的构型,诱导了NKI-L16识别的表位在静止淋巴细胞的表达。NKI-L16识别表位的表达是粘附作用发生的重要条件,但并不是唯一的,因为CTL细胞虽表达高水平的NKI-L16表位却并不发生自发凝集。目前研究认为,LFA-1分子至少以三种形式存在:(1)静止淋巴细胞表达的LFA-1分子,暴露很少的NKI-L16表位,与ICAM-1分子结合的亲和力(affinity)低;(2)中间状态的LFA-1分子,暴露出大量的NKI-L16表位,但与ICAM-1结合的亲和力仍较低;(3)活化状态的LFA-1分子,暴露出大量高亲和力的NKI-L16表位。不同状态的LFA-1分子在淋巴细胞表面的分布方式是不同的,静止淋巴细胞的LFA-1分子分布分散,而活化的外周血淋巴细胞、CTL克隆、效应T淋巴细胞以及活化的CTL克隆细胞的LFA-1分子呈集中分布,在局部形成高密度的LFA-1分子区域,这可能与NKI-L16表位的暴露有关(图2-10,表2-5)。LFA-1分子在局部形成高密度状态可以提高其与配体结合时的亲合力(avidity)。

在integrin家族中,这种精细的构型调节作用并不仅限于LFA-1分子,已发现VLA-4分子同样存在着静止、部分活化和活化三种要构型,活化的VLA-4分子可与VCAM-1和纤粘连蛋白相结合,部分活化的VLA-4分子仅结合VCAM-1分子,而静止状态的VLA-4分子则失去结合任何配体的能力。

淋巴细胞活化后LFA-1分子分布状态的改变

图2-10 淋巴细胞活化后LFA-1分子分布状态的改变

注:静止外周血淋巴细胞(PBL)向活化PBL分化过程中需要Ca2+存在;活化PBL向效应PBL分化以及CTL克隆向活化的CTL克隆分化过程中需要有Cg2+存在。活化的和效应的PBL或CTL表面LFA分子呈集中分布。

表2-5 三种状态LFA-1分子特性的比较

 静止状态

LFA-1分子

中间状态

LFA-1分子

活化状态

LFA-1分子

LFA-1分布方式分散集中集中
与ICAM-1结合的亲和力
与ICAM-1结合的亲和力
NKI-L16表位暴露
LFA-1β链(CD18)磷酸化

2.Ca2+、Mg2+与LFA-1分子活化状态的关系Ca2+和Mg2+的存在对LFA-1分子与配体的结合是必需的,在粘附试验系统中加入金属离子螯合剂(EDTA或EGTA)去除反应系统中的Ca2+和Mg2+可以完全抑制LFA-1与其配体的结合。采用单克隆抗体对LFA-1分子表位的表达进行检测,发现Ca2+与Mg2+与LFA-1分子某些表位的表达有关,而这些表位的表达是LFA-1分子活化构型的标志。如上述NKI-L16识别表位的表达需要有Ca2+存在;另外一株单克隆抗体24(McAb24)识别的表位在LFA-1、Mac-1和gp150、90均有表达,但依赖Mg2+的存在。PMA或抗细胞表面分子的单克隆抗体作用引起的细胞凝集有一过性持续性两种,一过性的作用在半小时之内消失,而持续性的作用可维持2小时以上。这种现象与离子依赖种类有一定的关系,PMA、NKI-L16、抗CD2和CD44单克隆抗体可以引起持续性的LFA-1分子的活化,它们的作用只依赖Mg2+的存在;而抗CD3、CD43和MHC-Ⅱ类分子的单克隆抗体所引起的凝集是一过性的,它们的作用则依赖Ca2+与Mg2+的同时存在。

LFA-1介导细胞粘附调节的模式图

图2-11 LFA-1介导细胞粘附调节的模式图

注:抗原与TCR/CD3复合物结合后激活磷脂酶c,催化PIP2水解为IP3和DAG,引起LFA-1分子β链的磷酸化,使LFA-1分子构型发生变化,提高与配体结合的亲和力。CD3分子的磷酸化引起TCR/CD3复合物的调变,导致PKC水平下降,使LFA-1分子β链去磷酸化转变为非活化状态而产生去粘附作用。

3.LFA-1分子构型改变的机理 目前对于淋巴细胞活化后导致LFA-1分子构型改变的机制还不十分明了。实验表明,PMA作用于淋巴细胞后,通过激活蛋白激酶C(PKC)使LFA-1分子β链发生磷酸化,很可能与LFA-1分子构型的改变有关。抗CD2或CD3单克隆抗体可以通过影响磷酸肌磷酸肌醇代谢途径导致PKC的激活,但两种McAb影响淋巴细胞粘附分子活化的过程是不同的,抗CD2单克隆抗体诱导持久的LFA-1分子活化,而抗CD3单克隆抗体只能诱导短暂的、一过性的LFA-1分子的活化(图2-11)。这种对粘附分子表达的负反馈调节机制,对于体细胞粘附作用的调节过程可能有重要的意义。体内对粘附作用的负调节意味着细胞可以与相互作用的靶细胞脱离,再作用于其它靶细胞,从而最大限度地发挥作用。前面曾提到McAb24识别的表位表达在活化状态的LFA-1分子,McAb24并不阻断LFA-1分子和Mac-1分子与配体的结合,但却可以明显抑制单核细胞向T细胞的抗原提呈作用、LAK细胞对靶细胞的杀伤作用以及中性粒细胞的趋化移动,这些过程均依赖LFA-1和Mac-1分子与其配体的相互作用。单独CD3单克隆抗体只引起一过性的LFA-1分子的活化,而同时加入McAb24则造成持续性LFA-1分子的活化,提示McAb24可能阻止LFA-1分子由活化状态转变为非活化状态。

(二)其它粘附分子构型的改变对粘附作用的影响

除LFA-1分子外,在integrin家族中其它一些粘附分子构型的改变也可以影响细胞的粘附能力。PMA、抗CD2或CD3单抗可以诱导或增强淋巴细胞的VLA-4(CD49d/CD29)、VLA-5(CD49e/CD29)和VLA-6(CD49f/CD29)与其配体(层粘连蛋白或纤粘连蛋白)的粘附作用,提示上述粘附分子可能通过与LFA-1相类似的机制发生构型变化,导致与配体结合的亲和力升高。Mac-1分子(CD11b/CD18)及血小板糖蛋白GPⅡbⅢa(CD41/CD61)分子在细胞活化后可以暴露新的表位,是其分子构型发生改变的直接证据,但其发生机制目前还不清楚。

尽管目前尚未获得selectin家族粘附分子构型变化影响粘附能力的直接证据,但某些抗L-seletin或抗E-selectin分子EGF结构域的单抗非但不阻断L-selectin分子或E-selecti分子与相应配体的结合,反而具有促进作用,提示selectin家族粘附分子中同样存在着分子构型变化对粘附能力调节的可能性。

二、细胞粘附分子表达数量改变对粘附作用的调节

粘附分子表达数量的改变是粘附作用调节的另一个重要方面。粘附分子构型改变与表达数量的增减并不是截然分开的两个过程,两者可能同时存在,共同完成对粘附作用的调节。如淋巴细胞活化后不仅粘附分子构型改变导致亲和力增加,同时也伴有粘附分子数量的增加。

1.调节细胞表面粘附分子表达数量的方式 细胞表面粘附分子表达数量的调节方式主要有诱导贮存在细胞内的粘附分子转移到细胞表面和诱导粘附分子的重新合成两种方式。转移形式的过程发生迅速,只需数秒钟,但维持时间短暂。如凝血酶和组胺作用于内皮细胞可以诱导内皮细胞内贮存在CD62分子迅速转移到细胞表面,然后又很快被内吞而消失;又如CD11b/CD18、CD11c/CD18贮存在中性粒细胞的胞浆颗粒内,在PMA、TNF、IL-1刺激后迅速转移到细胞表面。重新合成过程发生较为迟缓,一般需数小时,但维持时间较长。IL-1、TNF-α作用于血管内皮细胞则可以诱导E-selectin、VCAM-1分子的重新合成与表达,诱导后4小时达到高峰,并可维持24小时以上。

2.细胞因子、炎症介质对粘附分子表达的调节 细胞因子IL-1、IL-3、IL-4、IL-8、PAF、GM-CSF、TNF-α、TNF-β和IFN-γ以及炎症介质白三烯、组胺和凝血酶等可作用于白细胞或/和血管内皮细胞,调节白细胞与血管内皮细胞的粘附作用(表2-6)。在体内可能有多种调节因素同时存在,相互影响,并可能有更多的目前未知的因素参与细胞间粘附的调节过程。

3.细胞的生长、发育状态对粘附分子表达的影响 除了上述细胞因子、炎症介质可以调节细胞粘附分子的表达外,细胞本身的生长、发育、分化及代谢状态也可以影响粘附分子的表达。在胚胎发育过程中,组织细胞粘附分子的表达接一定的规律发生改变,使得不同细胞得以按一定的规律组合在一起,形成不同的组织或器官。肿瘤细胞与其起源的正常组织细胞相比其表达的粘附分子可有很大差异,这可能是某些肿瘤细胞易发生浸润、转移等现象的分子基础。此外,处于不同分化和发育状态的淋巴细胞表达粘附分子也有明显改变,如与未经抗原刺激的T细胞(naive T cell)相比,记忆性T细胞(memory T cell)表达更多的CD2、LFA-1、CD44、VLA-4等粘附分子,而L-selectin在naive T细胞表达水平要明显高于记忆T细胞。

表2-6 细胞因子、炎症介质对细胞粘附分子表达的调节作用

炎症介质或细胞因子靶细胞粘附分子表达水平的变化
IL-1血管内皮细胞E-selectin↑、VCAM-1↑、ICAM-1↑
 某些肿瘤细胞ICAM-1↑
 中性粒细胞CD11b/CD18↑、CD11c、CD18↑
TNF-α、TMF-β血管内皮细胞E-selectin↑、VCAM-1↑、ICAM-1↑
 中性粒细胞CD11b/CD18↑、CD11c/CD18↑
IL-3嗜碱性粒细胞CD11b/CD18↑
IL-4血管内皮细胞VCAM-1↑
IFN-γ血管内皮细胞ICAM-1↑、VCAM-1↑MHC-Ⅱ类分子↑
PAF、IL-8、 GM-CSF中性粒细胞L-selectin↓、CD11b/CD18↑
组胺、凝血酶血管内皮细胞CD62↑
白三烯中性粒细胞粘附作用↑

注:↑表示上调(up-regulation)

↓表示下调(down-regulation)

第三节 粘附分子的功能

在体内,一种细胞可能同时表达多种粘附分子,一种粘附分子也可以表达于多种不同的组织细胞,而细胞间的相互粘附作用又可能由多对粘附分子受体/配体共同参与,单从某一对粘附分子的作用难于了解细胞粘附作用的全过程。本节着重从粘附分子参与的体内某些生理或病理过程来介绍粘附分子的功能,并简述其分子基础。

一、炎症过程中白细胞与血管内皮细胞的粘附

炎症过程的一个重要特征就是白细胞粘附、穿越血管内皮细胞,向炎症部位渗出。这一过程一个重要的分子基础是白细胞与血管内皮细胞粘附分子的相互作用,表2-7例举了参与这一过程的粘附分子。不同白细胞的渗出过程或渗出过程的不同阶段所涉及的粘附分子不尽相同。

1.不同粘附分子在粘附过程不同阶段所起的作用 在体内由于血液处于不断流动状态,白细胞与血管内皮细胞的粘附作用是在血液流动产生的切力作用下进行的,因此白细胞与血管内皮细胞的相互粘附作用有其特殊性。体内白细胞与血管内皮细胞的粘附作用包括白细胞沿血管壁流动的最初粘附作用,以及随后的加强粘附和穿越内皮细胞的过程。为了模拟体内血液流动状态,在体外研究白细胞与血管内皮细胞的粘附作用时,采用了特殊的实验装置,使培养液中的中性粒细胞不断流动通过培养状态的单层内皮细胞。实验表明,在流体产生的切力作用下,CD11/CD18与其配体ICAM-1对于中性粒细胞与血管内皮细胞的最初粘附几乎不起作用。相比之下,L-seletin分子与其配体E-selectin的结合则发挥重要的作用,抗L-selectin分子的单克隆抗体可明显阻断这种最初的粘附作用。在随后发生的中性粒细胞与血管内皮细胞加强粘附并穿越血管内皮细胞的过程中,L-selectin分子与其配体的结合则几乎不起任何作用,而CD11/CD18与其配体的相互作用上升到关键地位。已经粘附于血管内皮细胞的中性粒细胞L-selcetin分子表达水平显著下降,在趋化因子(如膜结合IL-8)的诱导下,CD11/CD18表达水平则明显升高。事实上,L-selectin分子表达下降可减少对已粘附中性粒细胞的牵拉作用,有利于CD11/CD18介导的中性粒细胞的穿越血管内皮细胞过程。

表2-7 参与白细胞与血管内皮细胞粘附的粘附分子

白细胞粘附分子(受体)主要表达细胞内皮细胞的粘附分子(相应配体)
CD11a/CD18N.L.MICAM-1、ICAM-2、ICAM-3
CD11b/CD18N.L.MICAM-1
CD11c/CD18N.L.M 
VLA-4(CD49d/CD29)L.MICAM-1
l-selectin(CD62L)N.L.ME-selectin、P-selectin
CD15NE-selectin、P-selectin

注:N:中性粒细胞 L:淋巴细胞 M:单核细胞

2.膜结合细胞因子在白细胞与血管内皮细胞粘附过程中所起的作用 调节上述白细胞粘附分子表达的细胞因子有血管内皮细胞膜表面结合的IL-8、GM-CSF、PAF等对中性粒细胞具有趋化作用的细胞因子,血管内皮细胞所合成的上述细胞因子主要以膜结合(membrane-bound)的形成表达于血管内皮细胞表面。中性粒细胞与血管内皮细胞的粘附过程是在血管内皮细胞膜结合细胞因子调节作用下多种粘附分子按顺序协调作用的复杂过程(图2-12)。

在中性粒细胞粘附、穿越血管内皮细胞的过程中,IL-8、GM-CSF和PAF等细胞因子发挥着关键的调节作用,没有上述细胞因子的作用,最初粘附到血管内皮细胞的中性粒细胞可能重新回到血流中去。膜结合细胞因子的存在作用其特殊意义,它可以使细胞因子的作用局限化,促进白细胞的粘附、渗出、游离的细胞因子(IL-8等)作用于白细胞减少其L-selectin分子的表达,反而抑制白细胞的粘附、渗出。血管内皮细胞表面不同的膜结合细胞因子不同白细胞粘附作用的选择性激活可能是选择白细胞粘附、渗出过程的因素之一。

中性粒细胞粘附、穿越血管内皮细胞过程的模式图

图2-12 中性粒细胞粘附、穿越血管内皮细胞过程的模式图

淋巴细胞的粘附、渗出过程可能采取相似的方式,只是所涉及的粘附分子及粘附激活机制有所不同。即最初是由seectin分子介导的淋巴细胞与血管内皮细胞的不稳定的粘附,随后血管内皮细胞的膜结合细胞因子作用于淋巴细胞激活其integrin分子,导致加强粘附及穿越血管内皮细胞的过程。

粘附分子在白细胞渗出过程中的重要作用在先天性白细胞粘附缺陷症(leukocyte adhesion deficiency,LAD)发病机理中得到了证实。该病的临床特征是反复发生难以治愈的感染。LAD可分为LAD-1和LAD-2两型。LAD-1型患者白细胞CD11/CD18分子表达缺陷,因此不能与FN和C3bi结合,丧失非特异的调理作用;此外,虽然白细胞可以沿血管壁流动,由于不能与血管内皮细胞表面粘附分子ICAM-1结合,白细胞不能渗出到炎症部位。LAD-2型患者白细胞S-Lewisx(CD15s)表达缺陷,不能有效的与E-selectin分子结合,白细胞沿血管壁的流动能力显著低于正常人,同样也不能向炎症部位渗出。因此阻断白细胞与血管内皮细胞的粘附和白细胞的渗出有可能成为预防和治疗性疾病的一种新的手段。

3.细胞因子在白细胞选择性渗出过程中的作用 不同炎症具有不同类型的炎细胞浸泣,如急性炎症以中性粒细胞渗出和浸润为主,慢性炎症往往以淋巴细胞浸润为主,Ⅰ型超敏反应的变态反应性炎症以嗜碱性粒细胞的选择性渗出为主,迟发型超敏反应性炎症则以单核细胞、T细胞浸润为特征。虽然目前对白细胞选择性渗出的机理还不完全明了,但已有的证据显示粘附分子在不同类型白细胞表达的差异以及细胞因子对粘附分子表达的不同调节作用可能是重要的因素。如IL-4和IFN-γ作用于血管内皮细胞可以选择性地诱导粘附性粒细胞表达,在中性粒细胞不表达,因此IL-4和IL-4和IFN-γ可以选择性的促进除中性粒细胞以外的白细胞的粘附作用。IL-4和IFN-γ是由活化T淋巴细胞产生的细胞因子,炎症局部活化T淋巴细胞可能通过产生IL-4和IFN-γ等细胞因子作用于局部血管内皮细胞,促进白细胞的渗出,因此IL-4和IFN-γ可能在免疫介导的炎症性疾病中发挥重要作用。此外,IL-8、GM-CSF和PAF等膜结合细胞因子也可能是导致白细胞选择性渗出的重要因素。

二、粘附分子与淋巴细胞的归巢

淋巴细胞在中枢淋巴器官发育成熟后,经血流定居在外周淋巴器官,并在全身和器官、组织以及炎症部位发挥多种生物学功能。淋巴细胞归巢(homing)是淋巴细胞迁移的一种特殊形式,包括:(1)淋巴干细胞向中枢淋巴器官的归巢(2)淋巴细胞向外周淋巴器官的归巢;(3)淋巴细胞再循环,即外周淋巴器官的淋巴细胞通过毛细血管后静脉进入淋巴循环,以利于免疫细胞接触外来抗原,然后再回到血循环;(4)淋巴细胞向炎症部位的渗出。淋巴细胞是一个不均一的群体,可以分为不同的群或亚群。淋巴细胞归巢过程的一个显着特点是不同群或亚群的淋巴细胞在上述移行过程中具有相对的选择性,即某一特定的淋巴细胞群或亚群定向归巢到相应的组织或器官。淋巴细胞归巢过程的分子基础是淋巴细胞与各组织、器官血管内皮细胞粘附分子的相互作用。一般将淋巴细胞的粘附分子称为淋巴细胞归巢受体(lymphocyte homing receptor,LHR),而将其对应的血管内皮细胞的粘附分子称为地址素(addressin)。多种粘附分子与淋巴细胞的归巢有关(表2-8),但参与不同群或亚群淋巴细胞归巢过程的粘附分子是不同的,成为淋巴细胞选择性归巢的分子基础。

(一)T细胞前体向胸腺的归巢

对于骨髓产生的T细胞前体(Pro-T cell)向胸腺归位的机理尚缺乏深入的研究。目前已知T细胞祖细胞表达CD44与L-selectin分子,它们可能与T细胞祖细胞的归巢有关。此外,胸腺血管内皮细胞表达一种被称为EA1的分子,可能起到地址素的作用参与T细胞的归巢过程。最近认为integrin中α6β1、α6β4对T细胞前体的粘附起重要作用。

(二)淋巴细胞向外周淋巴器官的归巢

淋巴细胞向外周淋巴器官的归巢主要有淋巴细胞向外周淋巴结、派伊尔小结(Peyre's Patch)及脾脏的选择性归巢等几种不同的途径。

1.淋巴细胞向外周淋巴结的归巢 L-selectin是决定淋巴细胞向外周淋巴结选择性归巢的归巢受体,其相应配体为特异性表达于外周淋巴结血管地址素(perpheral lymphonode vascular addressin,PNAd)。L-selectin分子与PNAd相结合介导了淋巴细胞与外周淋巴结血管内皮细胞最初的粘附,随后参与粘附与穿越过程的粘附分子主要有LFA-1/ICAM-1、ICAM-2及CD44/MAd分子。

2.淋巴细胞向派伊尔小结的归巢 integrinα4β7分子是淋巴细胞向派伊尔小结定向归巢的特异归巢受体,抗α4β7的抗体可特异性地阻断淋巴细胞向派伊尔小结的归巢过程,而对淋巴细胞向外周淋巴结的归巢过程无明显影响。integrin α4亚单位可与β1、β2、βρ等β亚单位结合,分别组成α4β1、α4β7和α4βρ,并表达在不同的淋巴细胞表面,可能与特定淋巴细胞群或亚群的定向归巢有关。派伊尔小结的静脉高内皮细胞专一的、高水平表达粘膜血管地址素(mucosal vascular addressin,MAd).MAd是一种分子量为60kDa的糖蛋白,其对应的淋巴细胞归巢受体是integrin α4β7,两者的相互作用构成了特定淋巴细胞群向派伊尔小结定向归巢的基础。CD44及LFA-1分子作为淋巴细胞归巢受体与其配体MAd和ICAM-1、ICAM-2的相互作用也参与淋巴细胞向派伊尔小结的归巢过程,但它们与α4β不同,除参与淋巴细胞向派伊尔小结归巢外,还参加向其它外周淋巴器官的归巢。

表2-8 参与淋巴细胞归巢的粘附分子

表达于淋巴细胞的归巢受体

(lymphocyte homing receptor)

血管内皮细胞的相应地址素

(addressins)

粘附分子作用粘附分子作用
L-selecten淋巴细胞向外周淋巴器官的归巢PNDd外周淋巴结高静脉内皮细胞的地址素
CLA定向归巢于皮肤的记忆T细胞表面的归巢受体E-selectin表达在皮肤炎症部位的血管内皮细胞
LFA-1参与多种淋巴细胞归巢过程ICAM-1、ICAM-2参与多种淋巴细胞的归巢过程
VLA-4淋巴细胞归巢受体VCAM-1表达于炎症部位血管内皮细胞
CD44参与多种淋巴细胞归巢受体MAd肠道淋巴组织及粘膜固有层血
integrin定向归位于派伊尔小结的淋巴细胞的归巢受体MAd管内皮细胞的地址素
α4β7

淋巴细胞向脾脏的归巢过程也是特定淋巴细胞群的定向归巢过程,但其归巢机理与分子基础尚不清楚。

(三)淋巴细胞向非淋巴组织的归巢

正常的非淋巴组织没有或只有少量淋巴细胞,但在炎症状态下,淋巴细胞可以大量浸润。淋巴细胞向非淋巴组织的归巢可以区分为以下两种情况:(1)正常的皮肤及消化、生殖道粘膜组织中有特定表达γδ型T细胞受体(TCRγδ)的淋巴细胞群存在,它们可能直接来自中枢淋巴器官,这些淋巴细胞的归巢过程所涉及的粘附分子还不清楚。此外,正常皮肤或粘膜等组织中经常存在有少量记忆淋巴细胞,可能是少量抗原持续刺激的结果。(2)淋巴细胞向炎症状态下的非淋巴组织的归巢。在炎症组织中浸润的淋巴细胞多为记忆性T细胞,这些T细胞表达较高水平的CD45RO,此外,LFA-1、ICAM-1,α4-integrin、LFA-3,CD44等粘附分子的表达也明显高于天然(naive)T淋巴细胞。上述粘附分子相对高表达可能与记忆T细胞向炎症部位的选择性渗出有关。

淋巴细胞向非淋巴组织的归巢过程除了具有记忆T细胞的选择性外,还有组织特异性,也就是就特定的淋巴细胞群选择性的定向归巢到皮肤、粘膜或滑膜等组织。

1.淋巴细胞向皮肤炎症部位的归巢 皮肤炎症部位的血管内皮细胞表达高水平的E-selectin分子,而向皮肤炎症部位定位归巢的记忆T细胞则表达皮肤淋巴细胞相关抗原(cutaneouslymphocyte-associated antigen,CLA),E-selectin与CLA的相互作用是CLA阳性记忆T细胞向皮肤炎症部位定向归巢的分子基础。此外,VLA-4与VCAM-1,LFA-1与ICAM-1/ICAM-2的相互作用也与淋巴细胞向皮肤炎症部位的归巢过程有关(参见表2-8)。

2.淋巴细胞向肠道粘膜炎症部位的归巢 目前关于这一过种的研究资料还不多。粘膜组织中的淋巴细胞表达一种称为MLA(mucosal lymphocyte antigen)的表面抗原,由integrin分子β7链与另一条不同于α4链的多肽链组成,可能与淋巴细胞向肠道粘膜的归巢过程有关。

3.淋巴细胞向滑膜炎症部位的归巢 目前已知LFA-1/ICAN-1、VLA-4/VCAM-1及CD44/MAd都参与淋巴细胞向滑膜组织的归巢过程,但还不能解释淋巴细胞向滑膜组织归巢过程的选择性。推测可能还有未被发现的决定淋巴细胞向滑膜组织定向归巢的粘附分子。

(四)淋巴细胞归巢过程中激活粘附作用的分子

前已述及,淋巴细胞的归巢与中性粒细胞渗出的过程是相似的。同样,淋巴细胞归巢过程中最初粘附后粘附作用的激活机制也与中性粒细胞的渗出过程类似。

1.具有趋化作用的多肽 巨噬细胞炎症蛋白-1(macrophageinflammatory protein-1,MIP-1)可以膜结合的形式存在于淋巴结或炎症组织血管内皮细胞表面,通过作用于CD8+T细胞使其与血管内皮细胞粘附作用增强,这种粘附作用的增强是由T细胞VLA-4与血管内皮细胞VCAM-1分子相互作用介导的。此外,趋化因子家族的RANTES对记忆T细胞具有选择趋化作用。不同的趋化多肽对特定淋巴细胞群粘附作用的激活可能与淋巴细胞的选择性归巢有关。

2.粘附分子介导的粘附激活作用 抗CD2和抗CD3单克隆抗体作用于T淋巴细胞可使T细胞表面integrin分子构型改变而使其与配体结合的亲和力增加。此外,淋巴细胞其它表面分子在与配体结合后可能通过相同或不同的机制影响粘附分子间相互结合的亲和力。可能具有上述作用的粘附分子有CD15、CD31和VLA-4。(1)抗CD15单克隆抗体与结合于LFA-1分子的CD15结合后,通过LFA-1分子构型的改变使其与ICAM-1粘附作用增强。血管内皮细胞表达的E-selectin分子可能模拟抗CD15单克隆抗体的作用,与CD15结合后导致淋巴细胞LEA-1与其配体ICAM-1粘附作用的激活。(2)抗CD31的单克隆抗体作用于CD8+T细胞可激活VLA-4/VCAM-1介导的粘附作用,淋巴细胞CD31分子与其血管内皮细胞配体的作用可能导致相同结果。(3)VLA-4与其配体VCAM-1结合对其自身的粘附具有正反馈调节作用。由于表达CD31的细胞多为天然T细胞,VLA-4的表达局限于部分T细胞,因此CD31和VLA-4对粘附作用的激活可能与不同的淋巴细胞群的定向归巢有关。

淋巴细胞的归巢是一个多种粘附分子参与并受各种因素调节的复杂过程,对于这一过程还缺乏系统的、确切的认识。随着免疫生物学和分子免疫学研究的进展,必将推动这一重要领域的深入研究,并为某些疾病的诊断、预防和治疗提供一条崭新的途径。

三、粘附分子参与免疫细胞的识别作用

免疫细胞的相互作用及杀伤细胞识别靶细胞的过程中,除了需要对特异性抗原的识别作用外,还需要粘附分子的相互作用。某些粘附分子的抗体可以阻断免疫细胞的相互作用及杀伤细胞对靶细胞的杀伤作用(图2-13)。辅助性T细胞与抗原提呈细胞的相互作用过程中,T细胞受体(TCR/CD3)识别抗原提呈细胞表面的特异性抗原与MHC分子的复合体,而CD4/MHC-Ⅱ类分子(非多态部分)、LFA-1/ICAM-1、LFA-2/LFA-3、CD28/CD80的相互作用则可以使两者紧密接触,提供了相互作用的重要条件,并参与T细胞的活化过程和细胞因子的分泌调节。杀伤性T细胞杀伤靶细胞(如病毒感染靶细胞)时,其CTL特异受体识别靶细胞抗原与MHC-Ⅰ类分子的复合物,CD8/MHC-Ⅰ类分子(非多态部分)、LFA-1/ICAM-1、LFA-2/LFA-3的相互作用导致效一靶紧密接触,杀伤细胞的细胞毒介质得以有效地发挥作用。值得注意的是无论是免疫细胞的相互作用或效-靶细胞的相互作用,最终相互接触的细胞仍然要分开,显然细胞内存在着对粘附作用的负反馈调节机制,尽管这种调节机制目前还不完全清楚,但已知CD3分子的表达下调可以激活PLC,可能导致LFA-1分子的去磷酸化而使其失去活性,降低LFA-1分子介导的粘附作用。

粘附分子与免疫细胞的识别作用

图2-13 粘附分子与免疫细胞的识别作用

四、粘附分子参与细胞发育、分化、附着及移动

在胚胎发育过程中,不同类型的细胞按着既定的规律形成细胞与细胞之间及细胞与细胞外基质的附着,有序地组合在一起构成不同的组织和器官。在这一过程中,粘附分子发挥着重要作用。

(一)粘附分子参与细胞间的附着

参与细胞与细胞间附着的粘附分子主要是Cadherin家族的粘附分子,以及属于免疫球蛋白超家族的粘附分子NCAM及CD31。已经发现,Cadherin分子是组织学上在细胞连接中起重要作用的粘着小带(zonula adherence)的重要跨膜万分。参与细胞与细胞间附着粘附分子的共同特点是以自身识别的方式相互作用,即相同的粘附分子之间的相互作用。如将转染了不同Cadherin cDNA的L细胞混合在一起后,表达相同Cadherin分子的L细胞可以重新聚集在一起。这种特殊的自身相互识别的作用方式保证了相同细胞的聚集。在胚胎发育过程中,细胞粘附分子的表达有规律的发生改变,支配不同细胞的有序组合形成组织和器官。当一群细胞失去其原来表达的Cadherin分子或获得表达一种新的Cadherin分子时,它可以离开原有的细胞群。而如果不同的细胞群的发育过程中的某一阶段表达某一种相同Cadherin分子,它们可以相互联系起来。如肺的间叶细胞表达N-Cadherin分子,而上皮细胞表达E-Cadherin和P-Cadherin分子,将肺组织胰酶消化后加入E-Cadherin cDNA转染的L细胞,则L细胞与上皮细胞聚集在一起。上述实验表明,Cadherin分子在胚胎发育、分化过程中可能起着重要的作用。

介导活化CD4+细胞与活化B细胞相互作用的粘附分子

图2-14 介导活化CD4+细胞与活化B细胞相互作用的粘附分子

(二)粘附分子参与细胞与基质的附着

细胞与细胞间基质的附着是细胞生存与增殖所必需的,这种附着主要由integrinpe 家族的粘附分子来介导。除β2组外,integrin分子识别的配体大都是细胞外基质的成分,包括FN(fibronectin,纤粘连蛋白)、LM(lamnin,层粘连蛋白)、VN(Vitronecin,玻璃粘连蛋白)、CA(collagen,胶原蛋白)等。integrin分子广泛表达于各种组织细胞,而其配体广泛存在于细胞外基质中。细胞与基质的附着主要有以下两种情况:(1)间叶细胞,以成纤维细胞为代表,细胞的周围均与细胞外基质附着;(2)上皮细胞,细胞的周围部分与细胞外基质附着,而细胞侧面则是细胞之间的附着,在这种情况下细胞粘附分子的分布存在着极性,细胞癌变过程往往伴随着这种极性的丧失。

(三)粘附分子参与细胞的移动

在细胞发育、分化以及创伤修复过程中都需要细胞的移动,迄今为止对这一过程的确切机制还没有明确的认识,但可以肯定的是细胞粘附分子是这一过程的重要参与者,而且这些粘附分子的表达得到精细的调控。已经发现E-Cadherin、N-Cadherin、NCAM,CD31及FN和FN受体都与细胞移动有关。(1)在胚胎发育过程中,视神经轴突要沿着视束生长到达中脑顶盖建立突触联系,处于生长状态的轴突在神经表皮细胞表面移动,两者均表达N-Cadherin分子。如将胚胎的视网膜组织种植在单层不表达N-Cadherin的Neuro 2a细胞上,神经轴突不能生长;如果将Neuro 2a细胞转染N-Cadherin分子,则可以看到神经轴突的生长;抗N-Cadherin分子的抗体可以抑制轴突的生长。(2)FN及其受体的相互作用同样参与了胚胎发育中细胞的移动过程,含有RGD序列的多肽可以干扰胚胎发育中器官的发生。此外,FN及其受体还参与创伤修复过程中细胞的移动,FN可促进创面的愈合。(3)CD31则对细胞的移动具有抑制作用。

细胞粘附分子对细胞的移动具有促进与抑制两种作用,粘附分子在细胞表面分布的极性可能与其作用的差异有关。如CD31和E-Cadherin都分布在细胞的侧面与邻近细胞接触的部位,它们对细胞的移动具有抑制作用。

五、粘附分子与肿瘤

粘附分子与肿瘤的的关系主要包括对肿瘤浸润和转移的影响,对杀伤细胞杀伤肿瘤的影响,以及辅助肿瘤的诊断。

(一)粘附分子与肿瘤的浸润与转移

恶性肿瘤一个重要生物学特征是其对邻近正常组织的浸润及远处转移。目前已知肿瘤的浸润与转移与其粘附分子表达的改变有关。一方面肿瘤细胞某些粘附分子表达的减少可以使细胞间的附着减弱,肿瘤细胞脱离与周围细胞的附着,这是肿瘤浸润及转移的第一步;另一方面,肿瘤细胞表达的某些粘附分子使已入血的肿瘤细胞得以粘附血管内皮细胞,造成血行转移。

1.E-Cadherin与肿瘤浸润的关系 包括大肠癌、乳腺癌等在内的多种肿瘤细胞E-Cadherin分子表达明显减少或缺失,E-Cadherin分子表达水平降低与肿瘤细胞恶性程度显著相关。E-Cadherin分子在恶性程度低的乳腺癌细胞的表达水平明显高于恶性程度高的肿瘤细胞,而且其表达水平与腺小管形成成正比。体外实验更明确地证实了E-Cadherin分子与肿瘤浸润能力的关系。在培养状态下表达E-Cadherin分子的肿瘤细胞不侵入基附着的基质,但如加入抗E-Cadherin分子的抗体,则肿瘤细胞获得浸润能力;不表达E-Cadherin分子的肿瘤细胞在培养时表现浸润能力,但如将E-Cadherin分子的cD-NA转染肿瘤细胞使其表达E-Cadherin分子后,则肿瘤细胞丧失其浸润能力。

肿瘤细胞除粘附分子表达水平改变外,粘附分子在其表面的分布往往也有改变。E-Cadherin分子在正常的上皮组织中只分布于细胞相邻的侧面。而在某些上皮组织起源的肿瘤细胞E-Cadherin分子可以表达在细胞顶部。尽管某些肿瘤细胞可以表达一定水平的E-Cadherin分子,但分布的异常使其难以发挥细胞间附着的作用,这也可能与肿瘤的浸润与转移有关。

2.integrin家族与肿瘤浸润和转移的关系 integrin家族粘附分子在肿瘤细胞的表达水平也明显改变,既可表达数量减少或缺失,也可以表达升高,分布在极性亦可能不同于正常细胞。integrin分子在肿瘤细胞表达变化的不一致性可能与integrin分子的不同作用有关。同一种粘附分子可以在转移和附着两个不同的过程中发挥作用,因此integrin分子表达的增加或减少都可能与肿瘤细胞浸润及转移有关。

3.CD44和其它粘附分子对肿瘤转移的影响 与E-Cadherin分子对肿瘤浸润与转移的抑制作用相反,肿瘤细胞表达的某些粘附分子作为血管内皮细胞表面粘附分子、细胞外基质的相应受体可使已进入血流的肿瘤细胞粘附血管内皮细胞或基质,促进肿瘤细胞的转移。对肿瘤血行转移的研究多采用小鼠尾静脉注射黑素瘤细胞造成肺转移的模型,已知黑素瘤细胞表达的CD44分子、层粘连蛋白受体等都可以促进黑素瘤细胞有肺部形成转移灶,用相应粘附分子的抗体或可溶性配体则可减少黑素瘤的肺部形成转移灶。此外体内慢性炎症部位往往是肿瘤转移灶的好发部位,可能与炎症产物、细胞因子作用于局部血管内皮细胞促进其粘附分子表达而有利于肿瘤细胞的粘附有关。

不同的CD44分子在肿瘤浸润与转移过程中的作用可能是不同的,正常组织细胞或非转移的癌细胞主要表达CD44S,而具有转移能力的癌细胞主要表达CD44V。

(二)粘附分子对杀伤细胞杀伤肿瘤细胞的影响

杀伤细胞与肿瘤细胞的接触由两种细胞表面粘附分子的相互作用来介导,LFA-1/ICAM-1的相互作用具有重要地位。多种肿瘤细胞表达ICAM-1分子,肿瘤细胞ICAM-1分子的表达可能与肿瘤组织内淋巴细胞的浸润有关。细胞因子如IFN-γ、IFN-α、IL-4、TNF-α可促进某些肿瘤细胞ICAM-1分子的表达,从而增加其对杀伤细胞作用的敏感性。毛细胞白血病细胞不表达LFA-1和ICAM-1分子,使其对CTL的杀伤作用更为敏感。肿瘤患者血清中可溶性ICAM-1水平往往高于正常人,可能抑制NK对肿瘤细胞的杀伤作用。

(三)粘附分子与肿瘤的诊断

不同integrin分子在不同的组织、细胞有其特定的分布方式,虽然在肿瘤组织integrin分子的表达不同于正常组织,但仍在一定程度上保留了这种特定的分布方式,从而可以作为肿瘤分型诊断的参考依据。由于分化程度低的恶性肿瘤细胞在组织学上难以区分其组织来源,因此对其integrin分子表达的检测可以作为肿瘤诊断的一个有效的辅助手段。

正常的肝细胞表达VLA-α1和VLA-β1,而胆管上皮细胞表达VLA-α2、VLA-α3、VLA-α6和VLA-β4。肝癌包括肝细胞癌和胆管癌两种组织类型,分化良好的肝细胞癌和胆管癌表达integrin分子与其来源组织基本相似,但低分化的肝细胞癌可以表达VLA-α2、VLA-α3、VLA-α6。低分化的胆管癌细胞表达integrin分子的种类虽然与正常胆管相同,但表达数量明显减少。由于肝细胞癌不表达VLA-β4,而胆管癌细胞不表达VLA-α1,因此上述两种integrin分子可以作为区分两型肝癌的标志。

六、 粘附分子与凝血

凝血过程中血小板聚集的分子基础是血小板表面的粘附分子。在动脉和静脉中血小板聚集的机理有所差别,所涉及到的粘附分子也不尽相同。

(一)粘附分子与动脉凝血

动脉中形成的血栓主要由血小板组成,称为白血栓。动脉中血栓的形成过程包括最初血小板与血管壁损伤部位的接触、粘附及随后的活化、伸展和聚集。血小板与血管壁损伤部位的接触由血小板表面糖蛋白复合物GPIb-IX与管壁上的vWF因子(vonWillebrand facfor)的结合介导。GPIb-IX或vWF的遗传缺陷都可以导致病人凝血机能的障碍,在临床上分别被称为Bernard-Soulier综合征(Bernard-Soulier syndrome,BSs)和von Willebrand病(von Willebrand's disease,vWd)。

GPIb由一两条多肽链通过二硫键连接所组成,两条链分别称为GPIba(135kDa,CD42b)和GPIbβ(22kDa,CD42c),GPIb与另一个糖蛋白分子GPIX(23kDa,CD42a)按1:1的比例通过非共价键结合构成GPIb-IX复合物。GPIbα、GPIbβ和GPIX的共同特点是都含有不同数目的由24个氨a基酸构成的富含亮氨酸糖蛋白的重复序列段(leucine-rech glycoprotein,LRG)。BSs病人的血小板除缺乏GPIbα、GPIbβ、GPIX三种分子外,同时还缺乏另一条称为GPV的肽链。GPV同样含有LRG序列,其功能还不清楚。GPIb-IX复合物与vWF结合的部位在GPIbα链上,位于其N端的第7个LRG重复序列及近膜部分的富含碳水化合物区域之间(图2-15)。vWF可由血管内皮细胞和血小板合成,单体分子量为220kDa。血管内皮细胞可向其附着面分泌vWF,结合于基底膜的胶原纤维。

GPIb-IX复合物的结构模式图

图2-15 GPIb-IX复合物的结构模式图

GPIb-IX与vWF结合的显著特点是切力依赖性(sheardependence),即GPIb-IX与vWF的结合只有动脉中血液快速流动状态下才会发生,在静脉血液流动缓慢或静止时GPIb-IX与vWF并不结合,目前对于这种切力依赖性结合发生的机理仍不清楚。

GPIb-IX与vWF的结合导致血小板的活化,使血小板糖蛋白GPⅡb-Ⅲa(αⅡbβ3)的构型发生改变,得以与血浆中vWF、FB、FN等配体结合,构成后续血小板的结合部位,触发血小板的聚集过程。另一种血小板糖蛋白GPⅠaⅡa(α2β1)可能也参与此过程。

(二)粘附分子与静脉凝血

静脉血栓形成过程中血小板起着较为次要的作用,血栓主要含有红细胞和纤维蛋白,称为红血栓,此过程与GPIb-IX和vWF的相互作用无关。血小板与血管壁的粘附可能由GPIaⅡa(α2β1)、GPIcⅡa(α5β1)αvβ3、GPⅡbⅢa(αⅡbβ3)等粘附分子共同介导,上述粘附分子的作用是切力非依赖性的。

七、粘附分子与细胞内信号传导

细胞间或细胞-基质间粘附分子相互作用并不仅限于细胞的粘附和附着,对参与粘附细胞的活化、分化、生长和分泌等也有显着的影响,并有赖于粘附分子将胞外粘附分子相互作用的信号向细胞内的传导。粘附分子所传导的信号可能作为一种辅助因素,协同其它刺激因素的作用,如α3β1、α4β1、α5β1、α6β1和αLβ2与配体的作用可以协同TCR/CD3介导的淋巴细胞增殖和细胞因子产生,提示淋巴细胞与胞外基质的作用可能影响其活化状态。此外单核细胞及中性粒细胞表面integrin分子与配体的作用也参与诱导细胞产生炎症因子的过程。

(一)粘附分子与细胞内酪氨酸磷酸化

酪氨酸磷酸化是细胞内信号传导的一个重要途径,而integrin分子与某些细胞内的酪氨酸磷酸化发生有关。血小板活化过程伴随着广泛的细胞内蛋白酪氨酸磷酸化,integrin分子αⅡbβ3的表达是血小板内酪氨酸磷酸化过程发生的必要条件,αⅡbβ3不表达或其与配体的作用被阻断均可阻碍血小板内的酪氨酸磷酸化过程。但αⅡbβ3单独作用并不足以引起酪氨酸磷酸化,而只是作为其它刺激活化因素的必要辅助条件。对其它细胞进行的研究结果同样提示integrin分子参与细胞内酪氨酸磷酸化的过程,如使KB细胞(一种癌细胞系)表达的α3β1分子发生交联后可以发现细胞内一种分子量为115~130kDa的分子发生酪氨酸磷酸化;NIH3T3细胞粘附干纤粘蛋白分子或用抗integrin抗体刺激,可以导致细胞内一种蛋白发生酪氨磷酸化。

某些细胞(如成纤维细胞、内皮细胞)粘附于纤粘连蛋白后胞浆的pH值升高。胞浆中pH值升高是integin分子与配体作用后向细胞内传导信号的结果,与细胞的伸展和生长有关。

(二)粘附分子与细胞膜磷脂酰肌醇代谢

吞噬细胞表达的integrin分子与纤粘连蛋白或层粘连蛋白等配体作用后可以导致细胞吞噬作用的增强,近年来研究表明这一现象与integin分子结合配体后影响细胞膜磷脂酰肌醇代谢过程有关。

一种称之为白细胞应答整合素的integrin分子(leukocyte response integrin,LRI),与integrinβ3存在交叉反应,但不同于已知的任何一种integrin分子。LRI介导的吞噬增强作用可被蛋白激酶C抑制剂H7和Staruosporin所阻断,也可被百日咳毒素、钙离子螯合剂MAPTAM及结合磷脂酰肌醇的新霉素所抑制,因此推测LPI与配体的作用可能引起G-蛋白依赖的磷脂酶C的活化,导致细胞内PKC的活化和Ca2+浓度升高。此外还发现一种与LPI共沉淀的被称作整合素相关蛋白(integrin associated protein IAP)的5kDa分子,可能属于一种多次跨膜细胞表面分子家族。抗IAP的抗体可以抑制LRI介导的吞噬增强作用,推测IAP可能与LRI结合配体的亲和力有关或参与LPI的信号传导过程。

第四节 可溶性粘附分子

白细胞、血管内皮细胞或其它细胞表面的粘附分子可以被内吞进入细胞,也可以脱落下来,进入血液成为可溶性粘附分子(soluble adhesion molecules,sAM)。此外,某些粘附分子的mRNA存在着不同的剪接形式,其中有的mRNA翻译后的产物可能不表达在细胞表面,而是直接分泌进入血液,成为可溶性粘附分子的另一个重要来源。除血清外,某些可溶性粘附分子还可在脑脊液、肺胞灌洗液、尿、滑膜液及腹水中出现,反映了局部粘附分子的表达和代谢状况。在结构上,可溶性粘附分子一般缺少其对应膜结合粘附分子的穿膜和胞浆部分,其分子量也比相应膜结合粘附分子为小。由于可溶性粘附分子通常具有粘附分子的结合活性,因此可能作为机体调节细胞粘附作用的一个途径发挥作用。此外某些疾病状态下,粘附分子的表达或脱落增加,可致血清中可溶性粘附分子的水平显著升高,因此要检测可溶性粘附分子的水平可能成为监测某些疾病状态的指征。

很多粘附分子都有其对应的可溶性粘附分子存在,目前已发现的可溶性粘附分子有可溶性E-selectin、p-selectin、L-selectin、VCAM-1、ICAM-1、CD44和NCAM分子等,本节只就其中一部分要中溶性粘附分子加以介绍。

(一)可溶性L-selectin、(sL-selectin)

血清中的sL-selectin分子有62kDa和75~100kDa两种,分子量的不同是由糖基化程度的差异造成的,它们分别来自淋巴细胞和中性粒细胞,较其对应的L-selectin分子小3~5kDa。除血清中外,在脑脊液和尿中也发现有sL-selectin的存在。L-selectin分子mRNA尚未发现在不同的剪接形式,因此sL-selectin的来源主要是细胞表面L-selectin分子的脱落。体外致有丝分裂原、PMA活化的淋巴细胞或中性粒细胞受到L-8、LPS、fMLP、GM-CSF刺激后,都可释放sL-selectin分子,中性粒细胞上L-selectin可能是通过蛋白水解酶的作用使其脱落下来。sL-selectin分子具有结合活性,与膜结合L-selectin分子相比,sL-selectin分子与配体结合的亲和力烄低,可能sL-selectin分子的EGF样结构域构型改变有关。体外生理浓度下的sL-selectin分子对淋巴细胞与内皮细胞的粘附的抑制率约为15~20%,在败血症和HIV感染患者血清中,sL-selectin水平比正常人分别高2倍和3倍,反映了体内白细胞的活化。

(二)可溶性P-selectin(sP-selectin)

sP-selectin分子较P-selectin分子小3kDa,在血中以单体形式存在,而膜结合的P-selectin是以寡聚体存在。巨核细胞和血管内皮细胞内P-selectin分子的mRNA存在着不同的剪接形式,其中一种缺少胞浆区mRNA编码的蛋白质被分泌到血液中,是血浆中sP-selectin的主要来源。血红蛋白尿综合征(haemolytic uremicsyndrome)和血栓性血小板减少性紫癜病人血清中sP-selectin水平可显著升高。

(三)可溶性E-selectin(sE-selectin)

E-selectin分子在体内的分布非常局限,只表达在活化血管内皮细胞。体外细胞因子活化的培养内皮细胞上清中可以检测到sE-selectin分子,内皮细胞在IL-1、TNF-α和LT等细胞因子活化后,2~3小时即表达E-selectin,24小时内即从胞膜上量脱落下来,成为sE-selectin,因此血清中sE-selectin水平反映了体内血管内皮细胞的活化状态。E-selectin分子的mRNA尚未发现有不同的剪接形式,因此sE-selectin的来源是内皮细胞表面E-selectin分子的脱落。在肺间质疾病和过敏病人肺泡灌洗液中也可检出sE-selectin分子。sE-selectin分子具有结合活性,在体外可以抑制膜结合E-selectin分子介导的白细胞与内皮细胞粘附作用。体内生理状态下sE-selectin分子浓度虽未达到可以抑制白细胞与内皮细胞粘附作用的程度,但不能排除体内炎症局部sE-selectin分子达到高浓度的可能性。感染、肿瘤、糖尿病等多种疾病患者血液中sE-selectin水平高于正常人,其中以脓毒败血症病人最高,可达正常人23倍,并与疾病的严重程度和预后相关,sE-selectini水平持续升高的患者往往死亡率高。

(四)可溶性ICAM-1(sICAM-1)

血浆中的sICAM-1分子具有膜结合ICAM-1分子胞膜外区的大部分序列,可结合LFA-1分子。由于ICAM-1分子在体内广泛存在,sICAM-1的来源也相对较广泛,包括血管内皮细胞、某些肿瘤细胞等。在体外,黑素瘤细胞培养上清中sICAM-1水平明显升高,可抑制NK细胞的细胞毒效应,在体内sICAM-1水平升高与黑素瘤病情的发展及其它肿瘤的肝脏转移相平行。在神经系统炎症性疾病患者脑脊液、类风湿关节炎的滑膜积液、卵巢癌病人的腹水、间质性肺疾患病人肺泡灌洗液中都可检测到sICAM-1分子。目前尚未发现有可溶性ICAM-2和ICAM-3分子。

(五)可溶性VCAM-1(sVCAM-1)

关于sVCAM-1分子的报道较少,已知培养的活化内皮细胞可以释放sVCAM-1分子。sVCAM-1分子在80kDa和50kDa两种形式,其中80kDa分子的N端与膜结合VCAM-1是相同的。在脑脊液及滑膜液中也可有sVCAM-1分子存在。肿瘤与炎症患者血清中sVCAM-1可高于正常水平,在肾脏移植患者血清中sVCAM-1与肌酸酐小平变化趋势一致,全身性红斑狼疮病人血清中sVCAM-1与其病情活动程度相吻合。

表2-9 血浆中可溶性粘附分子水平及其与疾病的关系

粘附分子细胞来源正常人水平下列疾病时升高(举例)
L-selectin白细胞1.6~1.9μ/ml败血症、HIV感染
P-selectin血小板、内皮细胞98~262ng/ml血红蛋白尿、血栓性血小板减少性紫癜
E-selectin内皮细胞9~75ng/ml糖尿病、败血病、疟疾、全身性红斑狼疮肾癌、膀胱癌、肾功不全、血管炎、
VCAM-1内皮细胞、上皮细胞、巨噬细胞、树突细胞230~1400ng/ml肾癌、膀胱癌、肾功不全、血管炎、类风湿性关节炎、败血症、肾移植后
ICAM-1白细胞、内皮细胞、上皮细胞、肝细胞、平滑肌细胞102~450ng/ml肾移植后、败血症、肾功不全、肿瘤转移、白细胞粘附缺陷综合症、溃疡性结肠炎

目前对于血清中可溶性粘附分子的检测多采用ELISA试剂盒,表2-9列举了上述5种可溶性粘附分子在正常人血浆中浓度的变化范围及某些疾病状态下的变化。不同来源的试剂盒由采用抗体特异性和亲和力的差别、以及标准品不同,所得出的正常值范围有较大差异,因此有必要对这种检测手段加以标准化。值得注意的采用这种方法检测得到的浓度值未必能够准确反映可溶性粘附分子的实际水平,因为可溶性粘附分子除以游离状态存在外,还可以与细胞表面游离的配体结合,用常规的ELISA法无法检测结合状态的可溶性粘附分子。此外,对所测得的可溶性粘附分子水平应从粘附分子产生和清除两方面进行分析,产生的增加和清除的减少都可造成可溶性粘附分子血中水平的升高,是两个不同原因所导致的相同结果。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多