以沈阳机床集团CAK3665经济型数控车床主轴为研究对象,进行测试该机床主轴的温度场分布以及温升变化规律。CAK3665数控车床的整体结构示意图如图2所示。
图2 CAK3665数控车床整体图形
机床在冷态下开始试验,环境温度为22℃,相对湿度为50%,由于主轴采用铸铁材料,其传播率为1.00,反射率为0.637,热成像仪与发热点的距离为2,满足在试验前12小时之内没有工作,试验时不准机床中途停车。
利用FLIR热成像仪作为本试验主要的仪器设备,在数控车床主轴前后轴承以及其他主要热源处布置测点,实验时直接对各测点进行测量即可,该机床主轴的最高转速为4000r/min,应采用2000r/min的转速对数控车床主轴的温度场进行测试,可保证机床在高速运行时绝对安全,并通过软件的处理转换为实际的温度值。
在主轴运转时,运用热成像仪对主轴进行定期拍照,记录每一时刻的主轴温升热场,测得每一时刻各测点的温度值,温度测试系统的连接图如图3所示,其中,1为红外热像仪,2为火线,3为运行数据釆集及处理软件的PC机,4为电源模块。测试现场的图片如图4所示。

图3 温度测试系统连接示意图
图4 测试现场照片
主轴总共运行540min,当主轴连续转动270min时达到热稳定状态,在该状态下主轴的温度场分布如图5所示。
以最终主轴前后轴承处的最高温升作为考核的指标,车床主轴在中速下连续运行270min,主轴轴承温升测量结果如表1所示。主轴在转动过程中各个测量点的温度时间变化曲线如图6所示。

图5 热成像仪测量的温度分布
图6 温度变化曲线
通过以上实验,得出了数控车床主轴温度分布图,以及温度随时间的变化规律,由图5可知,由于热源的作用,使得整个温度场的分布不均匀,在前后轴承及法兰盘所在位置处的温度比其他地方高,主轴后轴承处的温度比前轴承处的高,主轴后轴承法兰盘处的温度也比前轴承法兰盘处的高,主轴头部将有翘曲的趋势,严重影响机床加工精度。
由图6知,从冷态下开始试验,车床主轴总共运行540min,在前270min运行的过程中,随着车床主轴的运转,各测点的温度逐渐升高,当车床主轴连续转动270min时达到温升稳定,各测点的温度值将不再随着主轴的运转而增加,后270min停车冷却,各测点的温度逐渐降低。
由表1可知,当车床主轴连续转动270min时,各测点的温度值将趋于稳定,此时,SP4(后轴承法兰盘)处的温度值为32.281,SP5(后轴承)处的值是31.582,SP8(前轴承法兰盘)处的温度值为30.744,SP7(前轴承)处的温度值是31.863,由此得出前轴承法兰盘处的最高温升为7.8,后轴承法兰盘处的最高温升为9.3。
主轴的热变形主要是由主轴的温度场分布不均匀而导致的,而温度场的分布不均匀是由主轴的冷源与热源的综合作用所引起的。综合以上实验测试的结果,提出以下措施:
1)选择合适的轴承支撑系统。使得主轴两端的轴承热变形基本一致,避免主轴发生翘曲。
2)改善冷却与散热条件。用循环水、循环冷空气等方法对主要的发热体进行冷却,以便带走主轴上的热量,从而减小主轴的热变形量。
3)均衡温度。在主轴结构中,通过对主轴各部位的温度快速均衡,使得温度较高位置的热量快速的传到温度较低的位置,以便达到热量与变形的平衡。
4)改善主轴结构。将主轴设计对称结构,以便在温升较大时,主轴各个部位所发生的变形平衡,减小加工误差。
表1 主轴轴承在中速下不同时间内的温升测量结果

设计到仿真优化过程。通过数字化工厂仿真平台,可直观地观察机器人在工作过程中运动状况,对机器人及设备的运动轨迹进行建模仿真,并对整体生产线进行节拍优化,很好地指导生产实际,极大提升工程设计人员的设计效率,减轻设计人员的工作强度,缩短工艺规划时间,优化生产布局,避免机器人与设备间的干涉情况,减少不必要的浪费。