来自于文章:Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer 里面提到了数据:
The sequencing data is also available in GSE118527 (OncoScan), GSE76250 (HTA 2.0) and SRP157974 (WES and RNAseq)
然后同样的作者2016年在plos one 发文重新修订了 之前的分类,变成4类:(TNBCtype-4) tumor-specific subtypes (BL1, BL2, M and LAR)
发表在Clin Cancer Res 2015 ,贝勒医学院研究小组的 Burstein 等人对自己的数据,198个TNBC病人芯片表达矩阵,使用80个核心基因进行分组,得到4个TNBC的亚型。
发表在 Breast Cancer Research (2015) :Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response,数据在 GSE58812, 法国研究团队的等人使用 适应性的Fuzzy-clustering 把107个TNBC 患者分成3类。
3个是 for MDSC,angiogenesis, and antigen presentation machinery
使用GSVA包的ssGSEA算法,对z-score后的RNA-seq表达矩阵进行分析。有趣的是作者提供了RPKM矩阵哦,The RNA-seq FPKM data have been deposited at figshare (https:///10.6084/m9.figshare.7306364.v1). 所以理论上可以重现作者的分析。
可以把病人分成3组不同的免疫状态,主要是看 IFNG, PD-L1, PD-1, and CD8 基因的表达
继续看这里作者使用NBclust分类,可以把病人队列划分为3个类群。
分型具有生存效果
RNA-seq和HTA2.0芯片的表达数据的比较
这里使用ComBat算法抹去两个平台的差异
在TNBC队列验证
同样也是分成3类:
在METABRIC队列验证
也可以区分成为3类,图片在文章里面的附件!
附件图片
Supplementary Figure 1. Workflow of our research.
Supplementary Figure 2. Estimation of the optimal clustering numbers of triple-negative breast cancer microenvironment phenotypes.
Supplementary Figure 3. Validation of microenvironment phenotypes clustering in METABRIC cohort.
Supplementary Figure 4. Validation of microenvironment phenotypes clustering in TCGA cohort.
Supplementary Figure 5. Comparison of potential molecules involved in the initiation of innate immunity among microenvironment clusters in FUSCCTNBC cohort.
Supplementary Figure 6. SNV and indel neoantigen load of the three microenvironment clusters in triple-negative breast cancer.
Supplementary Figure 7. Chromosome instability of the three microenvironment clusters in triple-negative breast cancer.
Supplementary Figure 8. Cancer testis antigen landscape of triple-negative breast cancer.
Supplementary Figure 9. Gene set enrichment analysis of enriched pathways in each cluster.
Supplementary Figure 10. Batch effect evaluation after 'Combat' of RNA-seq and HTA microarray datasets.
Supplementary Figure 11. Process and validation of mRNA clustering.
附件表格
Supplementary Table 1. The compendium of microenvironment cell subtypes in triple-negative breast cancer.
Supplementary Table 2. Correlation of estimated microenvironment cell numbers between our compendium and CIBERSORT or MCP-counter.
Supplementary Table 3. Clinicopathological characteristics of three microenvironment phenotypes in FUSCC, METABRIC and TCGA cohort.
Supplementary Table 4. Prognostic value of each cell subset by univariate Cox proportional hazards model for relapse free survival.
Supplementary Table 5. The signatures of ten oncogenic pathways.
Supplementary Table 6. Comparison of gene mutation frequency among clusters.
Supplementary Table 7. Comparison of somatic copy number alterations among clusters.
Supplementary Table 8. GO and KEGG annotation of genes in cluster-specific copy number variation peaks.