分享

现代IGBT/MOSFET栅极驱动器提供隔离功能的最大功率限制

 陸号鱼 2019-09-11

摘要

 

本文通过故意损坏IGBT/MOSFET功率开关来研究栅极驱动器隔离栅的耐受性能。

 

在高度可靠、高性能的应用中,如电动/混合动力汽车,隔离栅级驱动器需要确保隔离栅在所有情况下完好无损。随着Si-MOSFET/IGBT不断改进,以及对GaN和SiC工艺技术的引进,现代功率转换器/逆变器的功率密度不断提高。因此,需要高度集成、耐用的新型隔离式栅极驱动器。这些驱动器的电隔离装置体积小巧,可集成到驱动器芯片上。这种电隔离可以通过集成高压微变压器或电容器来实现。1, 2, 3 一次意外的系统故障均可导致功率开关甚至整个功率逆变器损坏和爆炸。因此,需要针对高功率密度逆变器研究如何安全实施栅级驱动器的隔离功能。必须测试和验证最坏情况下(功率开关被毁坏)隔离栅的可靠性。

 

简介

 

在最坏的情况下,即高功率MOSFET/IGBT发生故障时,逆变器几千µF的电容组会快速放电。释放的电流会导致MOSFET/IGBT损坏、封装爆炸、等离子体排出到环境中。4 一部分进入栅级驱动电路的电流会导致电气过载。5 由于功率密度极高,所以在制作驱动器芯片时,需要保证即使芯片本身出现故障,仍然能够保持电隔离。

 

高度集成的现代栅级驱动器的构建

 

芯片级隔离采用平面微变压器方法来提供电隔离。它采用晶圆级技术制造 ,配置为半导体器件大小。1iCoupler®通道内含两个集成电路(IC)和多个芯片级变压器(图1)。隔离层提供隔离栅,将每个变压器的顶部和底部线圈隔开(图2)。数字隔离器采用厚度至少为20 μm的聚酰亚胺绝缘层,在晶圆制造工艺中放置在平面变压器线圈之间。这种制造工艺以低成本将隔离元件与任何晶圆半导体工艺集成,实现出色的质量和可靠性。图2的剖面图显示了被较厚的聚酰亚胺层隔开的顶部和底部线圈的匝数。

 

图1.MOSFET半桥驱动器ADuM3223的芯片配置。

 

封装内的分接引线框架完成隔离。当栅级驱动器输出芯片因功率开关爆炸损坏时,内部芯片分区和配置必须确保隔离层完好无损。为确保栅级驱动器不受损坏,采取了以下几种保护措施:

 

  • 合理设置外部电路的尺寸,限制流向 栅级驱动器芯片的电流

  • 在驱动器芯片上合理配置输出晶体管

  • 在芯片上合理配置微变压器

  • 合理安排控制封装内的驱动器芯片

 

 

图2.ADuM3223:微变压器横截面。

 

ADuM3223 栅级驱动器的内部芯片配置(图1)展示了一种芯片配置示例,它能够在极端电气过载时避免发生电隔离故障。

 

仿真最糟糕的逆变器故障情况的破坏性试验

 

构建一个385 V和750 V两级电压的测试电路,用来模拟真实的功率逆变器情形。在采用110 V/230 V ac电网,需要实施功率因素校正的系统中,385 V电压电平极为常见。在使用额定击穿电压为1200 V的开关的驱动应用中,对于所使用的高功率逆变器而言,750 V电压电平极为常见。

在破坏性试验中,会接通由功率开关和适当的驱动器组成的逆变器桥臂,直到开关出现故障。破坏过程中的波形会被记录下来,以确定流入栅级驱动器芯片的电平。试验研究了几种保护措施,以便限制流入栅级驱动器电路的击穿电流。破坏性试验中用到了多种IGBT和MOSFET。

 

控制MOSFET/IGBT损坏程度的测试电路

 

为了实施IGBT/MOSFET驱动器电气过载测试(EOS测试),构建了一个非常接近真实情况的电路。该电路中包含适用于5 kW至20 kW功率范围逆变器的电容和电阻。轴向型栅极电阻Rg采用2 W额定功率的金属电阻。为了避免电流从高压电路反向进入外部电源,采用了一个阻流二极管D1。这也反映了真实情况,因为浮动电源包括至少一个整流器(即自举电路)。高压电源(HV)通过包括充电电阻Rch和开关S1的电路为电解电容块充电。

实施EOS测试时,采用500µs开启信号来控制输入VIA或VIB。开启信号通过微隔离进行传输,会造成短路,并损毁功率晶体管T1。在某些情况下,会出现晶体管封装爆炸。

 

共采用四种功率开关(两级电压)来仿真逆变器的损坏情况。针对特定开关类型实施的首次测试先后在不采用和采用功率限制电路的情况下进行。为了限制损坏阶段流入驱动器电路的电流,有些测试直接在驱动器输出引脚处配置了齐纳二极管Dz(BZ16,1.3 W)。此外,还研究了各种不同的栅级电阻值。

 

图3.用于测量功率开关损坏对隔离耐受性能影响的ADuM4223的EOS电路布局。

 

图4.用于确定隔离耐受度功率限制的ADuM4223的EOS电路布局。

图5.最糟糕情况下(输入和输出芯片直接承受电流时)ADuM4223的EOS电路。

无功率限制栅级驱动电路直接受损测试电路

 

还进行了另一项仿真最坏情况的实验,其中栅级驱动器的输入和输出芯片直接承受击穿电流(destructive energy)。在这次破坏性试验中,将充满电的大容量电容直接连接到栅级驱动器的输出引脚(图4)。该试验展示了可能出现的最严重的过载情形,从而检验其隔离功能耐受性。电流直接流入驱动电路,而栅级电阻是唯一的功率限制装置。继电器S2将高压耦合到栅级驱动器输出电路。

图5所示为最坏情况测试,其中没有采用任何器件限制流入输入和输出芯片的电流。将750 V高压通过开关S1直接施加于输出芯片,即在没有限流栅级电阻的情况下,将中高压750 V直接施加于驱动器芯片会出现的最坏情况。

另一种可能的最坏情况是对驱动器的主侧控制芯片施加过高的电源电压。推荐使用的最大输入电源电压为5.5 V。如果产生输入电压的DC-DC转换器失去调节能力,其输出电压就会增大。失去调节作用时,转换器的输出电压可以增大到一流DC-DC转换器的2到3倍。ADuM4223输入芯片承受的功率有限,电阻、功率开关、电感等其他设备都和往常一样在其各自的位置。这些器件会阻碍电流流入控制芯片。为了真实模拟DC-DC转换器故障,选择采用15 V、1.5 A限流值的电源电压。

 

实验结果

 

表1给出了使用图3、图4和图5中的电路实施过载测试的结果。为了确定保护电路的作用,针对每个MOSFET/IGBT 功率开关类型实施了两次测试。在9、10和11的最坏情况测试中,使用了机械开关S1和S2。

 

表1.不同功率开关及不同损坏条件下的破坏性试验

 

测试

ADuM4223

博士#

U/V

Rg

Dz

结果

Ed/mJ

注释

开关

电路

1

1

B

385

4.7

损坏

8.5


FDP5N50

图3

2

1

A

385

2 × 2.2

16

未损坏

3.5


FDP5N50

图3

3

2

A

385

2 × 2.2

16

损坏


Rg、DZ无问题

2xFDP5N50

图3

4

2

B

385

12

16

未损坏



2xFDP5N50

图3

5

2

B

385

4.7

16

未损坏

0.5


spw24N60C3

图3

6

2

B

385

3.9

未损坏



spw24N60C3

图3

7

2

B

750

4.7

16

未损坏

20

Rg损坏,DZ没问题

ixgp20n100

图3

8

2

B

750

4.7

损坏

25

Rg损坏

ixgp20n100

图3

9

1

A

150

4.7

损坏


Rg损坏

开关S2

图4

10

3

A

750

0

损坏


最坏情况的输出芯片

开关S1

图5

11

4

输入

15

0

损坏


最坏情况的输入芯片

开关S2

图5

 

图6.损坏SPW2460C3生成的波形图;未发现驱动器损坏情况。

 

图7.损坏2xFDP5N50(并联)生成的波形图;栅级驱动器出现故障。

 

一般情况下,齐纳二极管可以帮助保护驱动电路,如表所示(对比试验1和试验2)。但是当栅极电阻的值过小时,尽管采用了齐纳二极管,驱动器仍然会损坏(对比试验3和试验4)。

 

通过对比试验2和试验3,以及试验3和试验4,可以估算出损害驱动器的电流。通过试验5和6可以得出一个非常有趣的结论:与功率等级相同的IGBT相比,超结MOSFET似乎能显著降低流入栅极驱动器的功率水平。试验9、10和11(未限制流入控制和驱动器芯片的电流)的目的是研究最坏情况下的隔离栅耐受性。

 

MOSFET和IGBT的不同破坏表现

 

破坏性试验展示了功率开关受损时的各种波形。图6所示的是超结MOSFET的波形。接通电路和芯片损坏之间的时间间隔 大约是100µs。只有非常有限的电流流入驱动器芯片,需承受过载情况。在相同的试验条件下,标准MOSFET产生的栅极电流和过压明显更高,导致驱动器损坏,如图7所示。芯片损坏分析

 

部分栅级驱动器封装针对不同开关和不同测试条件,其芯片损坏情况相似。图8所示为试验8中基于P-MOSFET输出驱动级的损伤情况(表1)。在体电压为750 V时试验导致IGBT爆炸,以及限流器件Rg和DZ损坏;但是,只能看见引脚VDDA的线焊位置附近小范围熔化。在损坏阶段,栅级过电流通过内置的P-MOSFET二极管流入 100 µF 电容。由于过电流,线焊附近区域熔化。驱动器芯片没有进一步损坏,控制芯片也没有出现进一步的隔离损坏。图9所示为试验9过程中的熔融区域,其中直接将150 V高压施加于驱动器芯片。控制芯片的电隔离通过了本次极端过载试验。

 

图8.栅级驱动器芯片照片,展示了试验8期间的损坏位置 (ADuM4223 #1)。只有输出芯片表面有一小块烧坏。未发现隔离栅受损。

 

图9.栅级驱动器芯片照片,展示了试验9期间的损坏位置 (ADuM4223 #2)。极端电气过载未能损坏控制芯片。未发现隔离栅受损。

 

图10.栅级驱动器芯片照片,展示了试验10期间的损坏位置。输出驱动器施加超高功率损坏了电路;大面积烧坏。但是,隔离栅未受损。

主侧最坏的情况展示的是对控制芯片施加超高电源电压的情况

[1] [2]

关键字:IGBT  MOSFET

编辑:muyan 引用地址:http://news./manufacture/ic465389.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:最新净水材料诞生—新型石墨烯薄膜
下一篇:中美贸易让硅晶圆市场前途未卜

关注eeworld公众号
快捷获取更多信息
关注eeworld服务号
享受更多官方福利
0

推荐阅读

比亚迪吴海平:新能源汽车IGBT的技术进展

从功率器件来说,主要是IGBT,我们首先需要有更低的损耗,提高驱动效率,降低温升,帮助减少芯片面积,提高晶圆尺寸,降低成本。集成度提升也包括芯片面积减少还有更高的结温和更高的可靠性。本文为励展博览集团及NE时代于8月28-29日联合主办的 "第二届AWC2019新能源汽车关键元器件技术大会" 演讲嘉宾的现场实录。演讲嘉宾:吴海平 比亚迪第六事业部IGBT芯片产品部高级研发经理演讲主题:新能源汽车IGBT的技术进展吴海平:各位嘉宾大家上午好,感谢NE时代组织的这场论坛,让我有机会和大家分享一下相关技术进展。我是来自比亚迪微电子的吴海平,比亚迪微电子是比亚迪的全资子公司,比亚迪微电子产品包括新能源汽车
发表于 2019-09-04

SiC在电动车市场应用广泛

在为功率转换选择高功率开关器件时,过去只有两个选择,硅MOSFET或者是IGBT,然而最新的应用如AC-DC转换器,逆变器,DC-DC转换器等,都达到了上千V水平,需要考虑SiC等更耐高压的产品。对于高压开关,与传统的硅MOSFET和IGBT相比,SiC MOSFET具有显着的优势,支持超过1,000 V的高压电源轨,且工作在数百KHz频率,甚至超过了最好的硅MOSFET。值得注意的是,SiC器件可以满足新要求,但他们的电路要求不同。具体而言,它们具有特殊的栅极驱动需求,安森美半导体通过其SiC栅极驱动器系列解决了这一问题,将SiC MOSFET的优势带入当今要求苛刻的电源产品中,尤其是汽车电气系统和电动汽车等。应用目标
发表于 2019-08-26
SiC在电动车市场应用广泛

一文看懂IGBT芯片是如何工作的

随着现代科技的发展,先进半导体芯片得到了越来越多的重视。其实,半导体芯片在生活中的应用场景有很多,主要有:逻辑半导体——应用于电脑和各种移动终端中的核心计算芯片;存储半导体——我们手机的RAM、ROM等;以及功率半导体——广泛应用于汽车、高铁、电力行业的各种功率芯片,其中最著名的可能是IGBT。IGBT这个词你可能从没听过,但它一直在我们身边默默服务。小到微波炉、变频空调、变频冰箱,大到新能源汽车、高铁,甚至航母的电磁弹射,IGBT都不可或缺。作为半导体开关之一,IGBT是能量变换和传输的核心零件。常见的强电只有50Hz交流电,变压器只能改变它的电压。有了IGBT这种开关,就可以通过电路设计和计算机控制,改变交流的频率,或者把交流
发表于 2019-08-21
一文看懂IGBT芯片是如何工作的

IGBT—未来功率半导体的中流砥柱

IGBT(绝缘栅双极型晶体管),是由 BJT(双极结型晶体三极管) 和 MOS(绝缘栅型场效应管) 组成的复合全控型-电压驱动式-功率半导体器件,其具有自关断的特征。简单讲,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。IGBT融合了BJT和MOSFET的两种器件的优点,如驱动功率小和饱和压降低等。IGBT模块是由IGBT与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品,具有节能、安装维修方便、散热稳定等特点。IGBT是能源转换与传输的核心器件,是电力电子装置的“CPU” 。采用IGBT进行功率变换,能够提高用电效率和质量,具有高效节能和绿色环保的特点,是解决能源短缺
发表于 2019-08-19
IGBT—未来功率半导体的中流砥柱

​详解SiC在EV/HEV中的价值,以及如何更好的发挥其价值

原文链接:https://www./en/articles/techzone/2019/aug/effective-implementation-sic-power-devices-longer-range-electric-vehicles众所周知决定电动和混合动力电动汽车(EV / HEV)中行驶里程的关键因素是电池,但工程实际需要考虑的是整体电源管理系统——其中包括电机驱动、车载和外部充电器、电源利用率、刹车电能可回收等同样可提高驾驶里程。因此,随着对电动汽车需求持续增长,人们开始重视开发和采用可以优化电动车电池使用并延长汽车行驶里程的改进部件。从作为功率控制器件的标准MOSFET到基于碳化硅(SiC
发表于 2019-08-15
​详解SiC在EV/HEV中的价值,以及如何更好的发挥其价值

ADuM4135栅极驱动器与Microsemi IGBT模块配合使用分析

简介绝缘栅极双极性晶体管(IGBT)是适用于高压应用的经济高效型解决方案,如车载充电器、非车载充电器、DC-DC快速充电器、开关模式电源(SMPS)应用。开关频率范围:直流至100 kHz。IGBT可以是单一器件,甚至是半桥器件,如为图1所示设计选择的。本应用笔记所述设计中的APTGT75A120 IGBT是快速沟槽器件,采用Microsemi Corporation®专有的视场光阑IGBT技术。该IGBT器件还具有低拖尾电流、高达20 kHz的开关频率,以及由于对称设计,具有低杂散电感的软恢复并联二极管。选定IGBT模块的高集成度可在高频率下提供最优性能,并具有较低的结至外壳热阻。使用ADI公司的栅极驱动技术驱动IGBT
发表于 2019-08-14
ADuM4135栅极驱动器与Microsemi IGBT模块配合使用分析

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多