分享

非专业人员对成人院外心脏停搏患者的急救 Lay Responder Care for an Adult with Out-of-Hospital Cardiac Arrest

 医学abeycd 2019-12-16

院外心脏停搏是一个重大的公共卫生问题1-5。在美国,估计每年有155,000人因院外心脏停搏接受急救医疗(EMS),其中约有8%存活下来6。在欧洲,估计每年发生128,000~275,000例,其中约有10%存活下来3,7,8。无论是国家内部还是全球不同国家之间,在数据收集和报告方法以及生存率和神经系统结局方面均存在巨大差异3-11

院外心脏停搏患者治疗成功的一个关键概念是被称为“生存链”的策略,该策略强调包含早期获得治疗在内的系统化治疗方法,包括5个关键环节:早期识别心脏停搏和启动紧急响应系统;立即实施高质量的心肺复苏(CPR);快速除颤;基础和高级EMS;高级生命支持和停搏后的治疗12。对心脏停搏复苏所做的研究证实,生存链中最重要的环节是最早的两个环节,即识别心脏停搏和启动CPR,这两个环节基本上是由非专业的旁观者实施13

因此,非专业人员在院外心脏停搏患者的复苏中起着重要作用。医师可帮助普通公众了解旁观者在促进心脏停搏患者获得良好结局方面具有重要意义。此外,尽管医师并不直接参与旁观者对心脏停搏做出的应对,但他们应知晓如何为旁观者所做的心肺复苏提供支持,鼓励为非专业人员提供适当的教育,并且提倡放置自动体外除颤器(AED)供公众使用。

 急救人员抵达前的急救的概念


生存链的最早组成部分可以称为“急救人员抵达前的急救”(图1),其定义是在受过培训的医务人员抵达现场之前,由旁观者采取的基本医疗干预措施。这些组成部分包括识别心脏停搏和拨打急救电话、启动CPR和使用AED。急救人员抵达前的急救与心脏停搏患者生存及神经系统状况的实质性改善相关14-17。旁观者启动的CPR可显著增加患者存活机会;应用AED也可显著增加患者存活机会15,16。旁观者CPR和AED的结合可对患者结局产生协同正面极影响17。急救的实施及其对患者生存(神经系统功能正常的前提下)所产生的影响具有时效性(图2);院外心脏停搏患者接受CPR和除颤时间每推迟1分钟,其存活概率就会下降7%~10%19

图1. 急救人员抵达前的急救的组成部分

院外心脏停搏患者正由一名非专业人员实施胸外按压,第二名非专业人员正与应急通讯中心的调度员沟通,而调度员正向现场派出警察、消防和急救人员,同时提供CPR指导。应急中心调度员还采用基于智能手机的应用程序通知附近的非专业人员有人发生心脏停搏。第三位非专业人员正带着AED返回现场;应急中心调度员还采用无人驾驶飞机将AED送到现场,与此同时,警察、消防员和急救人员正闪灯鸣笛赶往现场。EMS表示急救医疗。

图2. 在非专业人员和EMS提供急救的情况下,与消防急救反应时间相关的院外心脏停搏患者生存率

图中根据EMS反应时间绘制了接受旁观者CPR和未接受旁观者CPR的患者的30日生存率。阴影区域代表95%的置信区间。接受旁观者CPR的患者的30日生存率高于未接受旁观者CPR的患者。经Rajan等许可后复印18

遗憾的是,只有不到50%的心脏停搏患者有旁观者实施CPR20;而使用AED的比例甚至更低,不超过25%,尽管目前已经有许多公共场所放置AED21,22。来自旨在提高生存率的心脏停搏登记系统(Cardiac Arrest Registry to Enhance Survival)的数据显示,在生存率(3.4%~22%)和神经系统结局(0.8%~21.0%)方面,美国132个县之间有很大差异;结局的这些差异可部分归因于旁观者CPR和AED使用频率的差异11。地区和国家在教育和提高认识方面所做的努力已增加了旁观者干预,并改善了患者相关结局16,23,但还需要做大量工作才能克服剩余的许多障碍24

非专业人员对心脏停搏的识别


旁观者很少对院外心脏停搏患者实施干预的主要原因之一是非专业人员可能无法识别心脏停搏。心脏停搏可能被误认为晕厥或惊厥发作。此外,心脏停搏患者可能会有持续数分钟的喘息25,这些可能对非专业人员造成困扰,导致旁观者采取急救措施的时间延迟26。为了消除上述困扰,2010年的美国心脏学会(American Heart Association,AHA)心肺复苏和心血管疾病急救指南(Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care)删除了之前强调的旁观者“一看二听三感觉”的方法,而是建议立即启动应急系统,并且对无反应并且无呼吸或喘息的成人启动胸外按压27。为了进一步简化非专业人员需要做的初步评估,2015年AHA28、欧洲复苏委员会(ERC)29和国际复苏联络委员会(ILCOR)30的指南建议,见到无反应且无法正常呼吸的人时,旁观者应怀疑其发生心脏停搏,并启动CPR28-30

教育工作的目标应该是帮助普通公众了解心脏停搏患者最初可能有与惊厥发作类似的动作或异常呼吸,并尽快启动急救,减少延迟。异常呼吸可能包括呼吸停止或濒死呼吸(呼吸慢且深,常伴有喘息)。如果非专业人员未能意识到眼前的人发生心脏停搏,应急通讯中心调度员所用的程序可帮助其识别医疗紧急情况;然后启动适当的应对措施并提供电话指导。

应急通讯中心调度员协助下采取的干预措施


识别出医疗紧急情况(包括可能发生心脏停搏的晕倒)之后,应立即启动应急系统12。在许多地区,应急系统是通过致电应急通讯中心的方式来启动。应急通讯中心工作人员的首要职责是向发生医疗紧急情况的现场派遣适当的EMS医疗队。EMS医疗队启动之后,调度员可向非专业人员提供更多指导,帮助其在急救人员抵达前提供适当急救。非专业人员执行调度员指令时遇到的障碍包括语言障碍、精神紧张及未能认识到在急救人员抵达前提供急救的重要意义。

应急通讯中心的调度员可以首先帮助拨打急救电话的人确定是否发生了心脏停搏。一般而言,调度员在大约70%的情况下可识别出是否发生心脏停搏31-33,识别出心脏停搏之后,如果拨打电话者愿意实施CPR,调度员可指导其实施心肺复苏。调度员与拨打电话者之间的口头交流方式会影响旁观者在EMS抵达之前实施CPR的可能性。“我们接下来要做CPR”和“我们需要做CPR”这样的表述暗示未来感和责任感,旁观者听后实施CPR的可能性较高34。调度员的指导也会增加心脏停搏幸存者恢复自主循环的概率,以及达到良好的神经系统功能的概率35,36

除指导CPR之外,调度员还可将拨打电话者引导到放置有AED的最近地点。确定并指出AED最近地点的策略在模拟研究中相当成功37,但在现实世界开展的调度研究却发现其效果较差38,39。在一项分析中,在调度员知晓有公用AED并将其位置告知旁观者的心脏停搏中(这一情况在所有心脏停搏中占少数),成功取回AED并用于患者的情况只占14%39。对是否使用AED产生影响的一个实际问题是通常需要至少两名急救人员,一人实施CPR,另一人负责取回AED。

调度员通过电话提供指导时,他可通过短信和其他基于智能手机的应用程序提醒社区内的其他人有人发生心脏停搏。这一方法可通知非专业人员(这些人自愿同意加入这些数字化应急系统)附近有人发生院外心脏停搏,提供关于心脏停搏及患者位置的信息,而且某些情况下还可提醒其附近有公用AED40。尽管这是一个新制订的策略,但早期研究表现出良好前景;研究表明,早期CPR的频率增加,幸存者的生存和功能状态也随之改善41,42。这一策略已正式得到AHA的支持43

最后,调度员可能可以采用无人驾驶飞机将AED送到现场。这一方法仍在研究中,但早期系统模型提示,无人驾驶飞机将AED送到现场的时间可明显早于标准急救车辆,在城市地区送到心脏停搏现场的时间可提前6分钟,在农村地区送到心脏停搏现场的时间可提前19分钟44-46

心肺复苏


CPR是一种在心脏停搏期间通过胸外按压和人工呼吸向重要脏器提供血液灌注的方法,CPR将持续至有条件采取确定性治疗。CPR有两种基本方法:结合胸外按压和人工呼吸的常规方法,以及仅进行胸外按压的新方法,该方法称为单纯按压式CPR。

关于常规CPR和单纯按压式CPR的益处比较,目前仍有一些争论28-30。心脏停搏时的中心静脉血氧饱和度可能正常;因为血氧饱和度可能几分钟后才会降低到临界水平,因此立即启动人工呼吸可能并无必要。此外,旁观者实施的口对口人工呼吸通常无效,不太可能为患者提供有意义的氧合;而且可能导致过高的胸内压,进而对血液灌注产生负面影响。此外,人工呼吸可能会影响高质量的胸外按压和及时除颤。因此,在心脏停搏早期由非专业人员实施人工呼吸的益处值得怀疑,尤其是由未经培训的旁观者实施人工呼吸的情况下。对接受常规CPR的患者和接受单纯按压式CPR的患者进行比较的研究表明,两者的生存率无显著差异47-49

非专业人员对单纯按压式CPR的接受度和参与度较好50,他们对实施常规CPR可能犹豫不决,原因包括害怕操作不当、担心心脏停搏患者在口对口人工呼吸过程中发生反流,或者担心在这一过程中发生疾病传染51,52。为了克服这些障碍,AHA于2010年支持未经培训的非专业人员采用单纯按压式CPR;2015年的AHA、ERC和ILCOR指南继续支持这一建议28-30。无论如何,实施CPR的能力仍然是公众关注的问题。在最近对美国CPR培训课程参与者进行的一项调查中53,受训者被问及对各种心脏停搏患者(男性和女性青少年、中年女性和老年男性)实施CPR的意愿,以及他们具体担心的问题。不到65%的参与者说他们对心脏停搏患者实施CPR的可能性中等或极高。他们最常担心的问题包括:可能对患者造成损伤,缺乏适当的CPR培训,需要脱去女性患者胸部的衣物,以及害怕被指控性骚扰。

不论采用哪种CPR方法,旁观者CPR的重要性已在许多研究中得到证实。在2010年一份包含10,681例院外心脏停搏患者的报告中,Rea等发现在接受旁观者CPR的患者中有22.1%存活,而在未接受旁观者CPR的患者中仅有7.8%存活54。包括79项研究中142,740例患者的一项荟萃分析显示,接受旁观者CPR的院外心脏停搏患者的生存率明显高于未接受旁观者CPR的患者(16.1% vs. 3.9%);此项分析还显示,在接受旁观者CPR的人中,为了挽救一条生命,需要治疗的人数为24~36人1。瑞典2019年的一项研究比较了2000—2017年的三个时间段,评估了常规CPR和单纯按压式CPR的实施率以及患者的30日生存率;作者指出,在该研究期间,在EMS抵达前实施的单纯按压式CPR增加了5倍,患者生存率翻倍55

旁观者CPR可延长可以成功实施心肺复苏的时间,因此EMS可以有更长的反应时间14-16,18。CPR延长可以成功实施心肺复苏的时间的一个潜在机制是延长了心脏停搏中可电击复律心律(心室颤动和无脉性室性心动过速)的持续时间。对伦敦救护车服务(London Ambulance Service)数据库中的2,772例患者开展的一项研究表明,在心脏停搏有目击者并接受旁观者CPR的患者中,有可电击复律心律的患者百分比为48%,而在未接受旁观者CPR的患者中,这一百分比为27%;在心脏停搏无目击者的患者中,研究者观察到类似趋势(31% vs. 18%)56。瑞典心脏停搏登记系统(Swedish Cardiac Arrest Register)在14年期间纳入的34,125例患者显示出类似结果;此外,在接受旁观者CPR的患者中,恢复自主循环所需的除颤次数较少57。旁观者CPR带来的益处随着初次除颤时间的延迟而增加58

专业急救人员在院内和院外均应用了可支持和鼓励医务人员实施高质量胸外按压的反馈装置。目前,对非专业人员的实时反馈仅限于提供CPR指令的AED所发出的声音提示。许多AED也可发出有节律或有节奏的提示音,协助非专业人员采取适当的胸外按压频率。

自动体外除颤器


AED是一种便携式设备,可自动分析心脏停搏患者的心律,并在检测出心室颤动或室性心动过速时发出除颤电击。心律诊断并不是非专业旁观者急救的一个组成部分;对于非专业人员而言,区别可电击复律和不可电击复律心律的唯一方法是AED发出声音提示“建议电击复律”,这个表明该设备检测出心室颤动或室性心动过速。在院外心脏停搏患者中,在最初,可电击复律心律的发生率(7.7%~32.0%的患者)显著低于不可电击复律心律,并且前者的预后优于后者59-63

经过培训和未经培训的急救人员操作AED时均遵循该设备的声音提示和图形指示。虽然AED的设计因制造商不同而略有差异,但不同设备的基本操作是相同的。用户收到启动设备和露出患者胸部的提示。必须将除颤器的电极片打开,移除保护性背板;然后根据AED上的图形将其贴在患者胸部。然后,AED会分析患者的心律,如果检测到可电击复律的心律,则指示用户按下发送除颤电击的按钮。作为公用除颤器项目的一部分,AED可放置在公共场所,供非专业人员使用。

公共场所AED在挽救生命方面的潜在优势已经过广泛研究。近期发表的一篇系统综述包含了41项关于公用除颤器的研究,结果表明在非专业人员实施了除颤的情况下,存活至出院的患者百分比中位数为53.0%,而在EMS人员实施了除颤的情况下,上述百分比中位数为28.6%(图3)64。2018年,复苏结局联盟(Resuscitation Outcomes Consortium)的研究者报告了在美国9个地区近50,000例院外心脏停搏患者中旁观者应用AED实施的除颤和EMS实施的除颤的结果比较65。研究者指出,在由旁观者实施除颤和由EMS实施除颤的患者中,存活至出院的比例分别为66.5%和43.0%;此外,在由旁观者实施除颤的患者中,有良好神经系统结局的出院患者比例高于由EMS实施除颤的患者(57.1% vs. 32.7%)。在观察到的所有院外心脏停搏中,旁观者对15.9%的患者应用了AED65。旁观者应用AED除颤的益处随着EMS反应时间的延长而增加65。2019年,Nehme等报告了一项关于旁观者、第一响应者(first responder)和急救人员对院外心脏停搏患者实施除颤的研究结果66,并报告了18年(2000—2017年)的结局。将上述研究期的最初2年(2000—2002年)和最后2年(2015—2017年)进行比较时,作者观察到由旁观者(从2.0%增加至11.2%)和第一响应者(从3.8%增加至8.2%)实施除颤的患者人数有所增加。在同一时期,作者指出不论除颤是由旁观者、第一响应者还是急救人员实施,存活至出院的患者人数均显著增加(全部三组均为P<0.001);然而,在由旁观者实施除颤的患者中(从6.7%增加至55.5%),上述增幅大于由第一响应者(从10.5%增加至37.8%)和由急救人员(从11.6%增加到28.8%)实施除颤的患者。

图3. 由旁观者应用AED实施除颤电击或EMS实施除颤电击的情况下,心脏停搏患者的生存率

如果有AED并且由非专业人员在EMS抵达前对心脏停搏患者实施除颤,则患者存活至出院或30日的比例显著高于由EMS实施除颤的患者。改编自www.sca-aware.org/sca-news/bystander-use-of-aeds-could-double-the-number-of-survivors,数据来自Baekgaard等64和Berdowski等2

如果将AED放置在公共场所,且该场所在特定时间有一定概率会发生有目击者的心脏停搏,则AED会特别有用67。AHA和ERC建议最好将AED放置在机场、火车站、赌场和运动场馆等场所29,30,或者放置在每5年至少发生1例心脏停搏的场所29。包括美国在内的许多国家都要求在商用飞机上放置AED。遗憾的是,目前尚未证明私人住宅放置AED有益;在一项对7,000多例高危患者(有前壁心肌梗死病史)开展的研究中,在家中放置AED并未提高总生存率68。公用AED的成本效益估计值有很大差异,AED放置在购物中心或运动场馆时,质量调整生命年(QALY)每增加1年的成本约为40,000~80,000美元,AED放置在人口不太稠密的地区时,QALY每增加1年的成本超过100万美元69

尽管AED有许多益处,但非专业人员使用AED也面临挑战。有研究提示,即使在大范围积极放置公用AED的地区,也只有不到10%的院外心脏停搏发生在AED周围100米范围内38,70。此外,在社区放置的许多AED是位于学校、商务办公室和体育设施等建筑物内部,因此公众在晚上、夜间和周末无法使用71,72(图4)。此外,在对未经培训的非专业人员所做的评估中,他们的AED操作能力存在很大差异73。关于除颤器电极片放置方法的图形和声音提示都很重要74。最后,尽管使用AED可能挽救生命,但操作AED也可能会分散非专业人员的注意力,影响其实施CPR75

图4. 多伦多地区中午和午夜时可用的公用AED。

多伦多共有737台登记的AED,中午时有707台(95.9%)可用,午夜时有228台(30.9%)可用。在各检查时间,这些地图中的AED每周至少有5日可用。经Sun等许可后复印72

对非专业人员的教育


旁观者如果要有效实施急救,他们必须能够识别心脏停搏、拨打急救电话、启动CPR以及使用AED(如果旁边有AED的话)12。遗憾的是,非专业人员识别心脏停搏的能力和实施CPR的能力在不同社区之间并不一致,这导致了旁观者应用CPR的情况存在差异。据估计,美国每年只有大约2.4%的人接受CPR培训。CPR培训率低的地区与美国心脏停搏结局较差的地区对应76

培训中不仅应提供相关信息,还应认真练习,重点是在得到反馈的情况下反复练习,直至完全掌握77。传统CPR课堂的课程通常需要3~4小时,而且要有1名现场教员。为了尽可能增加接受CPR培训的非专业人员数量,有许多新型教学方法正在研究中或已投入应用,包括在公共场所设立CPR培训站(图5)、在体育场对成百上千人进行集中培训、教学性质的角色扮演游戏以及使用虚拟现实程序12,78,79。时间长度从60秒至8分钟不等的教学视频可能可以有效培训人们实施单纯按压式CPR80。在培训站进行的4分钟培训课程(包括视频教学和有反馈的实践课程)可能比单纯视频教学更加有效81

许多国家和国际组织呼吁普及CPR培训。世界卫生组织支持“儿童挽救生命”(Kids Save Lives)培训计划,该计划建议学龄儿童每年接受2小时的CPR培训78。AHA的既定目标是到2020年,每年对2,000万人进行CPR培训80,ILCOR也发起了“世界所有公民都可以挽救生命”(All Citizens of the World Can Save a Life)计划,旨在增加CPR的培训和实施82

图5. 设立在巴尔的摩-华盛顿国际机场的胸外按压培训站

目前许多人流多的公共场所都设立了CPR培训站,旨在为候机乘客或参加公共活动的观众等提供培训。

结论


美国医学科学院(Institute of Medicine,IOM,现称为美国国家医学院[National Academy of Medicine])的“提高心脏停搏生存率的策略:现在采取行动”(Strategies to Improve Cardiac Arrest Survival: A Time to Act)建议在心脏停搏的管理中,医师“通过提高公众意识和增加培训来培养积极采取行动的文化”51。医师应支持这一策略,具体行动包括:鼓励公众参与急救人员抵达前的急救,支持对非专业人员提供者适当教育,以及倡导放置公用AED。医师也应该帮助公众意识到旁观者急救可对心脏停搏患者的生存产生实质影响。

IOM报告还提到了“多方向行动的力量”(The Power of Multiple Initiatives),即在教育、培训和资源设置等多个方向同时采取策略有助于解决这一重大公共卫生问题51。“多方向行动”强调了识别心脏停搏、拨打急救电话、实施CPR和应用AED51。如果可以在院外心脏停搏的早期启动急救人员抵达前的上述急救措施,有可能显著增加患者实现有意义存活的可能性。

    Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

    Dr. Brady reports receiving grant support from Siemens Medical Solutions. No other potential conflict of interest relevant to this article was reported.

NEJM医学前沿

作者信息

William J. Brady, M.D., Amal Mattu, M.D., and Corey M. Slovis, M.D. 
From the Department of Emergency Medicine, University of Virginia Health System, Albemarle County Fire Rescue, Charlottesville (W.J.B.); the Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore (A.M.); and the Department of Emergency Medicine, Vanderbilt University Medical Center, the Metro Nashville Fire Department, and the Nashville International Airport Department of Public Safety — all in Nashville (C.M.S.). Address reprint requests to Dr. Brady at the Department of Emergency Medicine, University of Virginia Health System, P.O. Box 800699, Charlottesville, VA 22908, or at wjbrady@virginia.edu.

参考文献

1. Sasson C, Rogers MAM, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 2010;3:63-81.

2. Berdowski J, Berg RA, Tijssen JGP, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation 2010;81:1479-1487.

3. Gräsner JT, Lefering R, Koster RW, et al. EuReCa ONE-27 Nations, ONE Europe, ONE Registry: a prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation 2016;105:188-195.

4. Beck B, Bray J, Cameron P, et al. Regional variation in the characteristics, incidence and outcomes of out-of-hospital cardiac arrest in Australia and New Zealand: results from the Aus-ROC Epistry. Resuscitation 2018;126:49-57.

5. Ong MEH, Shin SD, De Souza NNA, et al. Outcomes for out-of-hospital cardiac arrests across 7 countries in Asia: the Pan Asian Resuscitation Outcomes Study (PAROS). Resuscitation 2015;96:100-108.

6. Rea TD, Eisenberg MS, Sinibaldi G, White RD. Incidence of EMS-treated out-of-hospital cardiac arrest in the United States. Resuscitation 2004;63:17-24.

7. Atwood C, Eisenberg MS, Herlitz J, Rea TD. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 2005;67:75-80.

8. Hawkes C, Booth S, Ji C, et al. Epidemiology and outcomes from out-of-hospital cardiac arrests in England. Resuscitation 2017;110:133-140.

9. Nichol G, Thomas E, Callaway CW, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA 2008;300:1423-1431.

10. Zive D, Koprowicz K, Schmidt T, et al. Variation in out-of-hospital cardiac arrest resuscitation and transport practices in the Resuscitation Outcomes Consortium: ROC Epistry-Cardiac Arrest. Resuscitation 2011;82:277-284.

11. Girotra S, van Diepen S, Nallamothu BK, et al. Regional variation in out-of-hospital cardiac arrest survival in the United States. Circulation 2016;133:2159-2168.

12. Kronick SL, Kurz MC, Lin S, et al. Systems of care and continuous quality improvement: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2015;132:Suppl 2:S397-S413.

13. Deakin CD. The chain of survival: not all links are equal. Resuscitation 2018;126:80-82.

14. Kragholm K, Wissenberg M, Mortensen RN, et al. Bystander efforts and 1-year outcomes in out-of-hospital cardiac arrest. N Engl J Med 2017;376:1737-1747.

15. Nakahara S, Tomio J, Ichikawa M, et al. Association of bystander interventions with neurologically intact survival among patients with bystander-witnessed out-of-hospital cardiac arrest in Japan. JAMA 2015;314:247-254.

16. Malta Hansen C, Kragholm K, Pearson DA, et al. Association of bystander and first-responder intervention with survival after out-of-hospital cardiac arrest in North Carolina, 2010-2013. JAMA 2015;314:255-264.

17. Sayre MR, Berg RA, Cave DM, Page RL, Potts J, White RD. Hands-only (compression-only) cardiopulmonary resuscitation: a call to action for bystander response to adults who experience out-of-hospital sudden cardiac arrest: a science advisory for the public from the American Heart Association Emergency Cardiovascular Care Committee. Circulation 2008;117:2162-2167.

18. Rajan S, Wissenberg M, Folke F, et al. Association of bystander cardiopulmonary resuscitation and survival according to ambulance response times after out-of-hospital cardiac arrest. Circulation 2016;134:2095-2104.

19. Link MS, Atkins DL, Passman RS, et al. Electrical therapies: automated external defibrillators, defibrillation, cardioversion, and pacing: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2010;122:Suppl 3:S706-S719.

20. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics — 2015 update: a report from the American Heart Association. Circulation 2015;131(4):e29-e322.

21. Agerskov M, Nielsen AM, Hansen CM, et al. Public access defibrillation: great benefit and potential but infrequently used. Resuscitation 2015;96:53-58.

22. Weisfeldt ML, Sitlani CM, Ornato JP, et al. Survival after application of automatic external defibrillators before arrival of the emergency medical system: evaluation in the Resuscitation Outcomes Consortium population of 21 million. J Am Coll Cardiol 2010;55:1713-1720.

23. Iwami T, Kitamura T, Kiyohara K, Kawamura T. Dissemination of chest compression-only cardiopulmonary resuscitation and survival after out-of-hospital cardiac arrest. Circulation 2015;132:415-422.

24. Case R, Cartledge S, Siedenburg J, et al. Identifying barriers to the provision of bystander cardiopulmonary resuscitation (CPR) in high-risk regions: a qualitative review of emergency calls. Resuscitation 2018;129:43-47.

25. Bobrow BJ, Zuercher M, Ewy GA, et al. Gasping during cardiac arrest in humans is frequent and associated with improved survival. Circulation 2008;118:2550-2554.

26. Brinkrolf P, Metelmann B, Scharte C, Zarbock A, Hahnenkamp K, Bohn A. Bystander-witnessed cardiac arrest is associated with reported agonal breathing and leads to less frequent bystander CPR. Resuscitation 2018;127:114-118.

27. Field JM, Hazinski MF, Sayre MR, et al. Executive summary: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2010;122:Suppl 3:S640-S656.

28. Kleinman ME, Brennan EE, Goldberger ZD, et al. Adult basic life support and cardiopulmonary resuscitation quality: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2015;132:Suppl 2:S414-S435.

29. Perkins GD, Handley AJ, Koster RW, et al. European Resuscitation Council guidelines for resuscitation 2015. 2. Adult basic life support and automated external defibrillation. Resuscitation 2015;95:81-99.

30. Travers AH, Perkins GD, Berg RA, et al. Adult basic life support and automated external defibrillation: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation 2015;132:Suppl 1:S51-S83.

31. Møller TP, Andréll C, Viereck S, Todorova L, Friberg H, Lippert FK. Recognition of out-of-hospital cardiac arrest by medical dispatchers in emergency medical dispatch centres in two countries. Resuscitation 2016;109:1-8.

32. Viereck S, Møller TP, Ersbøll AK, et al. Recognising out-of-hospital cardiac arrest during emergency calls increases bystander cardiopulmonary resuscitation and survival. Resuscitation 2017;115:141-147.

33. Viereck S, Møller TP, Rothman JP, Folke F, Lippert FK. Recognition of out-of-hospital cardiac arrest during emergency calls — a systematic review of observational studies. Scand J Trauma Resusc Emerg Med 2017;25:9-9.

34. Riou M, Ball S, Whiteside A, et al. ‘We’re going to do CPR’: a linguistic study of the words used to initiate dispatcher-assisted CPR and their association with caller agreement. Resuscitation 2018;133:95-100.

35. Ro YS, Shin SD, Lee YJ, et al. Effect of dispatcher-assisted cardiopulmonary resuscitation program and location of out-of-hospital cardiac arrest on survival and neurologic outcome. Ann Emerg Med 2017;69(1):52.e1-61.e1.

36. Wu Z, Panczyk M, Spaite DW, et al. Telephone cardiopulmonary resuscitation is independently associated with improved survival and improved functional outcome after out-of-hospital cardiac arrest. Resuscitation 2018;122:135-140.

37. Riyapan S, Lubin J. Emergency dispatcher assistance decreases time to defibrillation in a public venue: a randomized controlled trial. Am J Emerg Med 2016;34:590-593.

38. Fredman D, Svensson L, Ban Y, et al. Expanding the first link in the chain of survival — experiences from dispatcher referral of callers to AED locations. Resuscitation 2016;107:129-134.

39. Gardett I, Broadbent M, Scott G, Clawson JJ, Olola C. Availability and use of an automated external defibrillator at emergency medical dispatch. Prehosp Emerg Care 2019;23:683-690.

40. Ringh M, Rosenqvist M, Hollenberg J, et al. Mobile-phone dispatch of laypersons for CPR in out-of-hospital cardiac arrest. N Engl J Med 2015;372:2316-2325.

41. Pijls RWM, Nelemans PJ, Rahel BM, Gorgels APM. A text message alert system for trained volunteers improves out-of-hospital cardiac arrest survival. Resuscitation 2016;105:182-187.

42. Lee SY, Shin SD, Lee YJ, et al. Text message alert system and resuscitation outcomes after out-of-hospital cardiac arrest: a before-and-after population-based study. Resuscitation 2019;138:198-207.

43. Rumsfeld JS, Brooks SC, Aufderheide TP, et al. Use of mobile devices, social media, and crowdsourcing as digital strategies to improve emergency cardiovascular care: a scientific statement from the American Heart Association. Circulation 2016;134(8):e87-e108.

44. Claesson A, Fredman D, Svensson L, et al. Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest. Scand J Trauma Resusc Emerg Med 2016;24:124-129.

45. Pulver A, Wei R, Mann C. Locating AED enabled medical drones to enhance cardiac arrest response times. Prehosp Emerg Care 2016;20:378-389.

46. Boutilier JJ, Brooks SC, Janmohamed A, et al. Optimizing a drone network to deliver automated external defibrillators. Circulation 2017;135:2454-2465.

47. Hüpfl M, Selig HF, Nagele P. Chest-compression-only versus standard cardiopulmonary resuscitation: a meta-analysis. Lancet 2010;376:1552-1557.

48. Bobrow BJ, Spaite DW, Berg RA, et al. Chest compression-only CPR by lay rescuers and survival from out-of-hospital cardiac arrest. JAMA 2010;304:1447-1454.

49. Panchal AR, Bobrow BJ, Spaite DW, et al. Chest compression-only cardiopulmonary resuscitation performed by lay rescuers for adult out-of-hospital cardiac arrest due to non-cardiac aetiologies. Resuscitation 2013;84:435-439.

50. Ewy GA, Sanders AB. Alternative approach to improving survival of patients with out-of-hospital primary cardiac arrest. J Am Coll Cardiol 2013;61:113-118.

51. Graham R, McCoy MA, Schultz AM, eds. Strategies to improve cardiac arrest survival: a time to act. Washington, DC: National Academies Press, 2015.

52. Virkkunen I, Kujala S, Ryynänen S, et al. Bystander mouth-to-mouth ventilation and regurgitation during cardiopulmonary resuscitation. J Intern Med 2006;260:39-42.

53. Becker TK, Gul SS, Cohen SA, et al. Public perception towards bystander cardiopulmonary resuscitation. Emerg Med J 2019;36:660-665.

54. Rea TD, Cook AJ, Stiell IG, et al. Predicting survival after out-of-hospital cardiac arrest: role of the Utstein data elements. Ann Emerg Med 2010;55:249-257.

55. Riva G, Ringh M, Jonsson M, et al. Survival in out-of-hospital cardiac arrest after standard cardiopulmonary resuscitation or chest compressions only before arrival of emergency medical services: nationwide study during three guideline periods. Circulation 2019;139:2600-2609.

56. Dowie R, Campbell H, Donohoe R, Clarke P. ‘Event tree’ analysis of out-of-hospital cardiac arrest data: confirming the importance of bystander CPR. Resuscitation 2003;56:173-181.

57. Nordberg P, Hollenberg J, Herlitz J, Rosenqvist M, Svensson L. Aspects on the increase in bystander CPR in Sweden and its association with outcome. Resuscitation 2009;80:329-333.

58. Gilmore CM, Rea TD, Becker LJ, Eisenberg MS. Three-phase model of cardiac arrest: time-dependent benefit of bystander cardiopulmonary resuscitation. Am J Cardiol 2006;98:497-499.

59. Bunch TJ, White RD, Friedman PA, Kottke TE, Wu LA, Packer DL. Trends in treated ventricular fibrillation out-of-hospital cardiac arrest: a 17-year population-based study. Heart Rhythm 2004;1:255-259.

60. Herlitz J, Andersson E, Bång A, et al. Experiences from treatment of out-of-hospital cardiac arrest during 17 years in Göteborg. Eur Heart J 2000;21:1251-1258.

61. Polentini MS, Pirrallo RG, McGill W. The changing incidence of ventricular fibrillation in Milwaukee, Wisconsin (1992-2002). Prehosp Emerg Care 2006;10:52-60.

62. Luo S, Zhang Y, Zhang W, Zheng R, Tao J, Xiong Y. Prognostic significance of spontaneous shockable rhythm conversion in adult out-of-hospital cardiac arrest patients with initial non-shockable heart rhythms: a systematic review and meta-analysis. Resuscitation 2017;121:1-8.

63. Song J, Guo W, Lu X, Kang X, Song Y, Gong D. The effect of bystander cardiopulmonary resuscitation on the survival of out-of-hospital cardiac arrests: a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med 2018;26:86-96.

64. Bækgaard JS, Viereck S, Møller TP, Ersbøll AK, Lippert F, Folke F. The effects of public access defibrillation on survival after out-of-hospital cardiac arrest: a systematic review of observational studies. Circulation 2017;136:954-965.

65. Pollack RA, Brown SP, Rea T, et al. Impact of bystander automated external defibrillation use on survival and functional outcomes in shockable observed public cardiac arrests. Circulation 2018;137:2104-2113.

66. Nehme Z, Andrew E, Bernard S, Haskins B, Smith K. Trends in survival from out-of-hospital cardiac arrests defibrillated by paramedics, first responders and bystanders. Resuscitation 2019;143:85-91.

67. Hallstrom AP, Ornato JP, Weisfeldt M, et al. Public-access defibrillation and survival after out-of-hospital cardiac arrest. N Engl J Med 2004;351:637-646.

68. Bardy GH, Lee KL, Mark DB, et al. Home use of automated external defibrillators for sudden cardiac arrest. N Engl J Med 2008;358:1793-1804.

69. Holmberg MJ, Vognsen M, Andersen MS, Donnino MW, Andersen LW. Bystander automated external defibrillator use and clinical outcomes after out-of-hospital cardiac arrest: a systematic review and meta-analysis. Resuscitation 2017;120:77-87.

70. Sondergaard KB, Hansen SM, Pallisgaard JL, et al. Out-of-hospital cardiac arrest: probability of bystander defibrillation relative to distance to nearest automated external defibrillator. Resuscitation 2018;124:138-144.

71. Hansen CM, Wissenberg M, Weeke P, et al. Automated external defibrillators inaccessible to more than half of nearby cardiac arrests in public locations during evening, nighttime, and weekends. Circulation 2013;128:2224-2231.

72. Sun CLF, Demirtas D, Brooks SC, Morrison LJ, Chan TC. Overcoming spatial and temporal barriers to public access defibrillators via optimization. J Am Coll Cardiol 2016;68:836-845.

73. Andre AD, Jorgenson DB, Froman JA, Snyder DE, Poole JE. Automated external defibrillator use by untrained bystanders: can the public-use model work? Prehosp Emerg Care 2004;8:284-291.

74. Bødtker H, Rosendahl D. Correct AED electrode placement is rarely achieved by laypersons when attaching AED electrodes to a human thorax. Resuscitation 2018;127:e12-e13.

75. Nishi T, Takei Y, Kamikura T, Ohta K, Hashimoto M, Inaba H. Improper bystander-performed basic life support in cardiac arrests managed with public automated external defibrillators. Am J Emerg Med 2015;33:43-49.

76. Anderson ML, Cox M, Al-Khatib SM, et al. Rates of cardiopulmonary resuscitation training in the United States. JAMA Intern Med 2014;174:194-201.

77. Cheng A, Nadkarni VM, Mancini MB, et al. Resuscitation education science: educational strategies to improve outcomes from cardiac arrest: a scientific statement from the American Heart Association. Circulation 2018;138(6):e82-e122.

78. Semeraro F, Frisoli A, Loconsole C, et al. Kids (learn how to) save lives in the school with the serious game Relive. Resuscitation 2017;116:27-32.

79. Chang MP, Gent LM, Sweet M, Potts J, Ahtone J, Idris AH. A novel educational outreach approach to teach Hands-Only Cardiopulmonary Resuscitation to the public. Resuscitation 2017;116:22-26.

80. Bobrow BJ, Vadeboncoeur TF, Spaite DW, et al. The effectiveness of ultrabrief and brief educational videos for training lay responders in Hands-Only Cardiopulmonary Resuscitation: implications for the future of citizen cardiopulmonary resuscitation training. Circ Cardiovasc Qual Outcomes 2011;4:220-226.

81. Heard DG, Andresen KH, Guthmiller KM, et al. Hands-only cardiopulmonary resuscitation education: a comparison of on-screen with compression feedback, classroom, and video education. Ann Emerg Med 2019;73:599-609.

82. Böttiger BW, Lockey A, Aickin R, et al. “All citizens of the world can save a life” — the World Restart a Heart (WRAH) initiative starts in 2018. Resuscitation 2018;128:188-190.

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多