分享

自由能源·德国KPP自由能浮力发电机原理(上)

 昵称63107543 2020-03-17
(2016-10-02 07:37:34)


  (科技文献·英汉对照)

博客:http://blog.sina.com.cn/u/2940475465

A method of extraction (restitution) of the energy supply stored in liquid or gaseous mediums and transformation of the energy obtained into mechanical work

《一种提取或还原存储在液态或气态介质中的能量,并将其转变成机械能量的方法》

     刘中凯

In 1607 Comelius van Drebbel, a Dutch scientist, demonstrated a "continuously operating" clock to the English king james I. The clock was set inmotion by a similar "continuously operating"motor,

or, to put it simply, a"perpetuum mobile". Van Drebbel had already patented the clock in 1598.

1607年,一个名叫·德雷贝尔Comelius van Drebbel)的荷兰科学家,在英格兰国王詹姆斯一世面前,公开展示了一个可以连续不停工作的钟表。这个钟表由一个类似的可以连续不停工作的发动机所驱动,或者不如干脆说,是由一个永动机驱动的。这位科学家在1598年已将这个钟表申请了专利。

However, unlike other numerous devices bearing the same name, the motor invented by Cornelius van Drebbel really was a "continuously operating" one in some sense.

What was the secret of this clock or, rather, of the motor that was setting it in motion?

然而,和其它的背负着这个名称的大批装置不同的是,由·德雷贝尔发明的这个装置,在某种意义上确实是一个可以连续不断运转的东西。

那么,这个钟表的秘密究竟是什么呢?(或者说,使钟表运转的那个发动机的秘密是什么呢?)

Van Drebbel's continuously operating clock worked dueto the drive, which used, like any other real motor, the single possible source of work —— the non-equilibrium (potential difference) of the envirorment.

Van Drebbel made use of a special type of non-equilibrium, though it was also related to pressure and temperature differences. it may act in an ideally balanced environment, the temperature and pressure of which are everywhere equal. What is the secret of this effect and where does work come from?

·德雷贝尔永动钟所以能工作,正如所有其它的真实发动机一样,是因为使用了唯一可能的一种动能——环境非平衡因素(势差或位差)。

·德雷贝尔利用了一种特殊形式的非平衡,尽管它也和压力差、温度差有关。它可以工作在一种理想的平衡环境中,在这里,温度和压力处处是相等的。那么,产生这种效应的秘诀是什么?而动能又来自何处呢?

The secret lies in the fact that potential differences do exist, manifesting themselves not spatially but temporally (Editor: In Goran’s  (Goran is our chief-engineer), given in 1996 at the conference "New Ideas in the Natural Sciences", he proposed a similar principle for obtaining energy from a single-wire power transmission line. Instead of a common potential difference U=X1-X2,

秘密就在于这个事实:时有时无而不是稳定存在的势能差,确实存在着,(编者按:我们的总工Goran1996年在名为“自然科学的新理念”的会议演讲中,提出了一个类似的原理,用一种单线驱动的传输线(single-wire power transmission line)来获得能量,而不是按通常方法从U=X1-X2这种势能差中提取能量)

He proposed a chronal potential difference U=X(tl)-X(t2). This means that a potential difference may be obtaine at a single point if a change in potential values is created). The principle can be illustrated by the example of the atmosphere. Let us assume that no considerable pressure and temperature differences are observed in the area where a motor is situated. But the pressure and temperature (common in all points) still continue to change (both day and night). These differences may be used for obtaining work (in full accordance with the laws of thermodynamics).

他提出一种所谓的chronal势能差U=X(tl)-X(t2),这意味着在单独一个点上即可获得势能差,只要在势能的大小上促成一种变化即可。这个原理可以以大气为例加以说明。我们可以假定,在放置发动机的这个区域没有观察到显著的压力和温度差,但是压力和温度(处处寻常的)仍然不断在变化着(不管白天还是黑夜)。这些变化可以被用于获得动能(完全符合热力学定律)。

In a description of the invention titled “A method of extraction (restitution) of the energy supply stored in liquid or gaseous mediums and transforming the energy obtained into mechanical work” (Patent claimed in Germany we are in the process) a version of a pseudo-continuously operating working solar engine was proposed by him. In order to increase the power and the number of cycles, the properties of two mutually unbalanced mediums - gas and water - are most fully used.

在对名为“一种提取或还原存储在液体或气态介质中的能量,并将其转变成机械能量的方法”的发明的描述中(在德国正在申请的专利),他提出了一种貌似可以连续永久工作的太阳能发动机模型,为了提升功率和循环速度,两种相互不平衡的介质:气体和水的特性,被充分地加以了利用。

Archimedes' principle is considered as a corollary of the law of conservation of energy, in which the buoyancy force is tied in with the energy consumed to create water and air. The amount of this energy determined such physical properties as density, thermal capacity and thermal conductivity.

阿基米德原理被认为是能量守恒定律的一种必然结果,在这里,浮力与生成水和气所消耗的能量联系在一起。这个能量的大小决定了这些物理特性,如密度、热容量和热导率。

The correlation of energy used for creating densities is partially reflected in the non-equilibrium coefficient, equaling 820. If we found a way to fully use this non-equilibrium, we would obtain an 820-fold gain in energy. Non-equilibrium states are observed starting from the moment of feeding air under a column of water.

用于创建密度的相关的能量,部分地反映了等于820的这个非平衡系数,如果我们能找到一种方法充分利用这种非平衡,我们将获得额外的820倍的能量。非平衡状态被观察到,是从向一个水柱下方注入空气时开始的。

They accumulate when the air rises because the air volume increases, taking away heat from the water. Air is fed under the water column at a temperature less than the temperature of the water, since if during the process of reaching atmospheric pressure the air pressure equals 4 Atm (0.4 MPa) and the temperature is +20°C (293 K). the air will cool down to-75°C (198 K), i.e. by 95°C. Heat extraction will take place in conditions close to adiabatic. This means that heat losses will be minimal due to the fact that water is a good heat accumulator but a bad heat conductor.

当空气上浮时,非平衡在聚积,原因是空气的膨胀和体积的加大,从水中吸走了热量。从水柱下方注入的空气的温度低于水的温度,原因是,如果在达到大气压力的过程中,注入空气的压力是0.4 MPa刘注:一标准大气压(atm)=0.101325兆帕)而温度是摄氏20°,那么,空气(在这个上升过程中)将冷却至负的摄氏75°,也就是下降了95摄氏度,热量的吸收将发生在接近绝热的条件下,这意味着热量的损耗将微乎其微,原因是,水是一种良好的蓄热体,但却是一种糟糕的导热体。

Calculation of an energy-extracting pneumohydraulic turbinea compressor is used as a source of compressed airdynamic and positive displacement-type compressors are the most suitable for this case. Since a dynamic compressor consumes more energy than a piston-type one, we choose the latter:

对一种吸收能量的气动涡轮(一种空压机)的分析结果表明,使用电动的和刚性的位移式压缩机最适合这种应用场合。因为非刚性的涡轮空压机比活塞式压缩机要消耗更多的能量,我们选择后者。

Source of compressed air ---VP2-10/9 piston-type compressor.

Compressor output ---0.167 m3/sec

Output pressure, MPa ---0.9 (9 Atm).

Compressors shaft capacity--- 56.5 kW

Water cooling

压缩空气气源--- VP2-10/9活塞式空气压缩机

空气压缩机输出---0.167 m3/sec

输出压力---0.9 (9 Atm).

压缩机轴输出能力---56.5 kW

水冷

The efficiency of a pneumohydraulic turbine will be evaluated by comparing the power supplied and the power obtained, i.e. the amount of work per second.

A compressor's output is evaluated by the volume of air fed into it at atmospheric pressure. This means that a productivity of 0.167 m3/sec is the air volume before entering the compressor and after it rises in the turbine. While feeding air under the bottom level of the turbine, 0.167 m3/sec of water will be displaced through the upper level.

气动涡轮的效率,是通过输入功率和获得功率的对比来计算的。

一部压缩机的输出,是根据在大气压力下该压缩机抽入的空气量来评定。这意味着,在空气进入压缩机之前和在水涡轮机中升起之后(见图1所示),压缩机要有一个每秒0.167 m3的泵气量。当在水涡轮机的下面泵入空气时,0.167 m3/sec的水在水的上层便被排开了。

 自由能源·德国KPP自由能浮力发电机原理(上)

       图1

The same amount of water will be fed again under the turbine's bottom level, thus creating an air-and-water mixture and causing it to move in-side the turbine. The value of 0.167 m3/sec corresponds to the water consumption taken into consideration during the calculation of the capacity of a pneumohydraulic turbine. The capacity is calculated using the formula used for calculating the capacity of a hydraulic turbine:

而同样多的水会再次从水涡轮机的下方进入,这样便产生了一种空气和水的混合物,并使它在水涡轮机中运动。0.167 m3/sec对应水的消耗量,在计算气动涡轮的功率时要考虑这个数值。计算功率使用的公式,是计算水轮机功率的公式:N=9.81×Q×H×n

 where 9.81 m/sec2 ---the gravitational acceleration; Q ---the water consumption in m3/s; H---the head in (m); n---Eficiency factor (which reaches rather high values and amounts to 0.94-0.95 0r 94-95% under most favorable conditions).

其中,9.81 m/sec的含义:是重力加速度

Q的含义:是水的消耗量,单位是m3/s

H的含义:是水位高度,单位是m

n的含义:是效率系数(在大多数有利的条件下,效率系数非常之高,能达到94-95%

As an air-and-water mixture is used as the working medium, there is a necessity to justify the use of this formula for calculating the capacity of a hydraulic turbine. We believe that the most effective results can be obtained in the operation mode of the turbine when a mixture of a 0.5 t/m3 density is used (comprising 50% water and 50% air).

由于作为工作介质使用的是一种气-水混合物,这就有必要证明,在这里使用这个计算水轮机功率的公式是正确的。我们相信大多数有效的结果,可以通过使用每立米0.5吨的密度(包含50%的水和50%的空气)这样一种运行模式来获得。

In this mode, the air pressure is a little higher than the absolute pressure inside the turbine case. Air is fed from the pressure tube of the compressor in the form of separate bubbles, which come out from it in equal intervals. The total volume of bubbles equals the volume of water between them in the turbine case. A bubble takes the shape of a spherical segment and works as a piston in a limited space, displacing water in an upward direction only, since its backflow is impossible due to the higher pressure, while its side-flow is impossible due to the incompressibility of water.

在这种模式中,空气的压力略高于水涡轮容器之中的绝对压强。空气通过空压机的压力管,以分离气泡的形式被泵入,这些气泡以相等的间隔冒出。气泡的总的体积,等于水涡轮容器之中周围水的体积。气泡的形状是一种球截形,其动作行为就像是一个在有限空间之中运动的活塞,由于压力更高,只是向上面排挤水,气泡的回流是不可能的,同时,因为水不可压缩,气泡朝侧向流动也不可能。

If a constant volume of air of 0.167 m3/sec is fed, 0.167 m3/sec of water will be displaced. This means that 2×0.167 m3/sec of the air-and-water mixture will be displaced through the upper level of the turbine, the stream velocity inside the turbine being high.

Thus, we get: 

N=9.81×2×Q×0.5×H×3 = 9.81-Q-H-n

如果每秒不断地输入0.167 m3的空气,那么,每秒也就会排挤掉0.167 m3的水。这意味着每秒将有2×0.167 m3的气-水混合物从水涡轮机的上部被排出,可以想见,水涡轮机内的流速是很高的。

这样我们得到:N=9.81×2×Q×0.5×H×3 = 9.81-Q-H-n

Let us consider an installation with a head of water column equaling 2m and calculate the compressor engine capacity needed to feed air under this water column, taking into consideration the atmospheric pressure, proceeding from the technical specifications of the compressor:

N=(2m×56.5kW)/(90m×10m)=1.13kW

我们可以设想一个有两米高水柱的装置,并算出压缩机从这个水柱下面泵入空气时所需要的功率,要将大气压考虑在内,并将压缩机的技术参数代入,计算结果是:

N=(2m×56.5kW)/(90m×10m)=1.13kW

A rising stream of an air-and-water mixture will be observed on all levels of the installation. No more than 5 working wheels may be installed along the stream due to the buoyant force the intensity of which does not depend on the depth of immersion of a body.

-水混合物向上的流动,可以在这个装置的所有层面被观察到。沿着这道气-水溪流,需要安装的叶轮不超过5组,这是因为,浮力的大小和沉入一个物体的深度无关。

The proposed turbine is more energy-efficient than the famous "Airlift" pump, since the flow of water takes place beneath the level of water in the turbine, i.e. in conditions close to zero gravity and without a considerable water level rise inside the turbine, on which the main amount of pump energy is spent. Let us assume that the turbine's energy efficiency equals 0.9. In this case the capacity will be:

N = 9.81 0.167 m3/sec×2 m×5×0.9 = 14.7 KW

Thus, we obtained output energy 13 times exceeding the input energy: 14.7 kW / 1.13 kW =13

推荐的涡轮机,比起著名的气动提升泵效率更高,因为水流产生在涡轮机内的水位之下,亦即,接近零重力的条件,并且在涡轮机内部,水位没有显著的提升,泵主要是对该水流做功。可以假设水涡轮机的效率是0.9,在这种情况下,输出功率是:

N = 9.81 0.167 m3/sec×2 m×5×0.9 = 14.7 KW

这样我们获得的输出能量,就是输入能量的13倍:14.7 kW / 1.13 kW =13

An increase in power by means of using additional Working wheels has been observed on working prototypes. The operability of the turbine has been indirectly proven by experiments carried out at Saint-Petersburg State Technical University (SpbSU).

在实物模型上观察到,通过增加工作叶轮可以提升功率的输出,这种涡轮机的可行性或可操作性,已经间接被曾在圣彼得堡国立技术大学进行过的实验所证实。

Thus, Professor V.V. Elistratov, a Doctor of Engineering Sciences, a member of the Commission for Unconventional Power Sources in the govemment of the Russian Federation and head of the Department of Renewable Energy Sources and Hydroenergetics of SpbSTU wrote: "However, proceeding from the hydraulics of hydraulic units and our munerous experiments of feeding air into the working wheel of the turbine in order to reduce cavitation erosion, an increase of cavitation values was observed accompanied by a considerable decrease of energy values".

这样,V.V. Elistratov教授,一位工程学博士(a member of the Commission for Unconventional Power Sources in the govemment of the Russian Federation and head of the Department of Renewable Energy Sources and Hydroenergetics of SpbSTU)写道:不管怎么说,无论是从水力学上的各种设施,还是从我们所做的,向涡轮机叶轮中泵入空气以降低空蚀的无数次实验,都观察到空穴的增多伴随着显著的输入能量的减少。

In this case, the experiments show that the air that is fed into the device creates a counter stream, which, acting on the working wheel from below, makes it rotate in the opposite direction. Such is the design of the wheel. In such a way, a small volume of air acts in a limited space equaling the volume of the hydroturbine case. The proposed installation may extract heat from the water and transform it into mechanical energy.

这个案例中的各种实验说明,泵入装置中的空气产生了一种反流,这个反流从下面作用在叶轮上,使它反向转动。叶轮就是这样设计的,这样,少量的空气在一个相当于水轮机壳体的有限空间内,产生了作用。推荐的装置可以从水中吸收热能,并将其转变成机械能。

Taking into consideration the temperature difference between the water and the air when the water temperature equals 80°C (the thermal source, water, heated up in a solar collector or in a system of turbine cooling or compressor cooling, etc), and the air temperaturce is 20°C, the coefficient of the air volume increase, according to the Gay-Lussac Law, will total:

1+ (s0°c – 20°C)/273 = 1.2

The capacity will amount to:

N =14.7 kW ×l.2 = 17.6 kW

Our expectations about a gain in energy were borne out:

17.6 kW/ 5 = 3.5 kW

3.5 kW / 1.13 kW = a 3.1-fold energy gain per wheel

考虑到水和空气温度的不同,当水温为80°C(水的热源,太阳能加热器,涡轮机冷却系统或压缩机冷却等等),而气温为20°C时,根据吕萨克定律,气体体积增长系数总量是:1+ (s0°c – 20°C)/273 = 1.2,输出功率将等于:N =14.7 kW ×l.2 = 17.6 kW

我们期望获得更多的能量被证实:17.6 kW/ 5 = 3.5 kW

3.5 kW / 1.13 kW =在每个叶轮上获得了一个3.1倍的能量。

During the calculation of the power needed to feed air under the water column, we took the atmospheric pressure into consideration (1 Atmosphere = 10 m of the water column). This means that the rising air overcomes the absolute pressure inside the turbine case. The pressure, composed of the water column pressure in the turbine and the atmospheric pressure, equals the pressure of a 12-meter water column.

在计算向水柱下泵入空气所需要的功率时,需要考虑大气的压力(一个大气压=10米水柱)。这个压力就是在水涡轮容器中上升的空气所要克服的绝对压强。这个压力由涡轮机中的水柱压力,大气压力组成,和一个12米的水柱压力相当。

The absolute pressure inside the turbine case is neutralized by the buoyancy force of the air, but since it is still present outside the case, it influences the feeding of air into the turbine. This influence can be compared to the influence of the negative pressure created in the turbine case by the total volume of water inside it on the water stream (this effect is not present in other hydroturbines).

水涡轮机容器中的绝对压强,被空气的浮力所中和,但是因为它始终存在于容器之外,因此影响到向涡轮机中泵入空气。这个影响可以比作在涡轮机容器中产生的负压影响,这种负压是所有涡轮机容器里面的水作用在水流上产生的(这种效应在其他的水轮机中是没有的)。

If the construction of the turbine meets out requirements, we can consider the head as:

H=H of water column + 10m

Then the power will total

N=9.81×0.167m3/sec×12m×5×1.2×0.9=106. 14 kW

We obtained output energy 93 times greater than the input energy.

如果水涡轮机的构造符合我们的要求,我们可以认为水位是原来的水位再加上10米,这样总的输出功率就是N=9.81×0.167m3/sec×12m×5×1.2×0.9=106.14 kW,于是,我们获得了大于输入93倍的输出。


原文链接:

http://www./index.php?m=content&c=index&a=show&catid=13&id=50

有关该项技术的更多的参考资料请见我的博文

《后石油时代与明天的能源战国·你准备好了吗?》(二)

祝各位愉快!

刘中凯

2016.10.2于北京五级重度污染之中

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多