分享

相对论思考

 wxsjbcf 2020-04-20

注意:建议您在阅读这篇有关狭义相对论的文章之前,先阅读一下:爱因斯坦的狭义相对论。

在上一篇有关狭义相对论的文章中,我解释了如何以及为什么需要修改对空间和时间的直观理解,以说明19世纪电磁理论的发展,特别是迈克尔逊-莫雷实验和 Galilean变换下电磁波方程的非协方差。 我解释了从狭义相对论的两个假设得出长度收缩,时间膨胀,时空间隔的不变性以及最终的洛伦兹变换:

· 第一个假设:物理定律在所有惯性参考系中都采用相同的形式。

· 第二个假设:在所有惯性参考系中,光速具有相同的数值。

看到我们生活在相对论宇宙中之后,现在该看看必须调整我们的思维方式,以便正确理解相对论宇宙中的物理学。

参考框架

狭义相对论最终是关于在不同参考系中观察者出现相同物理现象的方式的理论。 与狭义相对论相关的所有重要且著名的思想,例如质量能等效,时间旅行的不可能,光速作为普遍限速以及红移现象均来自这些假设。

为了数学上表示物理系统的运动定律并测量该系统的参数,我们需要一个坐标系。 但是,坐标系是数学上的抽象,自然界并不先验地要求必须存在坐标系或必须使用任何特定的坐标系来描述物理系统。 要使用坐标系,我们需要声明一个。 为此,我们将首先声明一个引用,该引用由物理空间中某个位置的点和与该点相交的垂直线系统组成。 然后,我们可以说参考线是轴,而原点是它们的交点,就可以使用参考来声明笛卡尔坐标系。 坐标系和参考的组合称为参考框架。

原点位置和轴方向的选择将始终参考物理对象或对象集合,例如,站在火车上的人的位置,x轴指向对象的前部。 轴或垂直于立方体面的立方体的中心。 没有什么可以阻止我们为同一系统定义多个参考系。 例如,我们可能还会定义一个参考框,该参考框附加在一个人旁,旁边站着观看火车经过的铁轨,或者我们可以定义一个参考框,该参考框固定在观看立方体旋转的某人的位置。 在这种情况下,参考系彼此相对运动。

这就是为什么不要将坐标系与整个参考系混淆的原因。 坐标系最终是将空间中的点映射成有序的数字元组的函数,而说作为抽象数学对象的函数在物理空间中旋转或移动是毫无意义的。 就我们的目的而言,将根据参考定义此功能。 例如,二维笛卡尔坐标系会将点P发送到有序对F(P)=(x(P),y(P)),其中x(P)是从点P到y的垂直距离 轴和y(P)是从点P到x轴的垂直距离:

相对论思考

在这种情况下,F(P)=(2,3),因此(2,3)是点P的坐标对。

我们将仅考虑惯性参考系,即相对于彼此以恒定速度运动而不会加速或旋转的框架。 相对论可以解释非惯性系,只要重力不是驱动加速度的因素(为此,您需要广义相对论),但是我们将在本系列的后面继续讨论。 这样做的原因是,如果可以检测绝对速度,则可以定义一个绝对参考系,这与自然界先验没有配备坐标系这一事实相矛盾。 但是,绝对加速度是可以检测到的,因为加速度暗示着力,而力要么起作用,要么不起作用。 如果不是这种情况,则可能会在一个帧中发生物理过程,而在另一帧中发生物理过程,这违反了第一个假设。

我们通常会对以下情况感兴趣:实验人员正在观察某个物理对象的运动,而观察者和对象都不会受到任何加速度。 物体速度为零的唯一帧称为静止帧(或适当帧)S',观察者速度为零的唯一帧称为观察者帧(或实验室帧)S。通常显而易见的是 哪一个。 最后,我们将始终假设观察者框架和静止框架处于标准配置,这意味着S'在x方向上相对于S具有恒定的速度,其坐标系的原点在t = t'= 0处重合,并且 两个框架中的坐标轴是平行的:

相对论思考

> Source: Wikimedia Commons. Public domain.

其余帧中的坐标标有素数(t',x',y',z'),观察者坐标则标有(t,x,y,z),这些坐标通过Lorentz变换关联 :

相对论思考

我们几乎总是忽略y和z坐标。

符号γ表示洛伦兹因子:

相对论思考

我们继续前进的最后一点。 如果确定对象在S帧中具有L的长度,在S'帧中具有L'的长度,则两个事件之间的时间间隔在S帧中是Δt而在S'帧中是Δt',或者质点的速度是U 在帧S'中的U'和在帧S'中的U',那么我并不是说L,Δt和U在不同的帧中'看起来'具有不同的值。 '出现'一词表示这些帧之间的这些值之间的差异某种程度上是导致它们偏离单个'真实'值的错误或错觉,或者这些数量的帧相关性表示我们的知识的局限性。 不是这种情况。 没有物体的真实长度,事件之间的真实时间间隔或粒子的真实速度之类的东西,因为测量这些东西需要坐标系,因此需要参考系。 没有单一的'正确'参考系,因此这些数量也没有单一的'正确'值。

现在,让我们深入探讨问题的实质,并使用相对论告诉我们的有关参考框架的信息来分析一些物理问题。

因果关系和相对论速度极限的不变性

从不同的参考系观察物理系统并不会为该系统行为的基础增加任何物理作用。 这意味着在一个帧中正确的事物在所有其他帧中都必须正确,尽管关于该事物为何正确的解释可能会改变。 换句话说,改变您的参照系不会改变自然的事实,自然的最重要事实之一是物理事件之间的因果关系。 如果事件A在一个帧中导致事件B,那么就不会有事件B导致事件A的帧。这称为因果不变性。 我们可以使用因果关系的不变性来理解当我们说c是'通用速度限制'时的含义。

假设存在一个帧S,其中事件A通过传播比光快的信号(例如,以速度U> c发射子弹)导致事件B。 在该帧中,令Δx为两个事件之间的距离,令Δt为它们之间的时间间隔,使得U =Δx/Δt。 由于事件A在帧S中在事件B之前,因此Δt必须为正。 令S'是相对于S以v <c的速度移动的帧。然后通过洛伦兹变换:

相对论思考

如果由于允许所有小于c的速度而必须允许c²/ U <v <c,则我们找到了一个参考帧,其中Δt'为负,这意味着在此帧B将在A之前,这是 不允许。

这意味着,如果一个事件导致另一事件,那么它必须通过传播速度不超过光速的信号来做到这一点。 通常将其描述为'信息传播的速度不能比光快'。 但是,我们将在后面的部分中看到,如果信号不允许事件A引起事件B,则信号可以以比c更快的速度从事件A传播到事件B。

同时性的相对性:相对论的蛇

一条非常快的蛇从生物学部门的笼子中逃脱,以0.6c的速度冲过桌子。 蛇的正确长度(在其静止框架中测得的长度)恰好是一米。 一个学生打算用恰好一米宽的矩形网子抓住蛇,方法是在适当的时候将网子砸在桌子上,使网子的左边缘碰到蛇尾巴后面的桌子。 网的右边缘将击中蛇头前面的桌子。 如果边缘碰到了蛇的身体,那么蛇会受到伤害,并且学生会从她的顾问那里得到帮助。

学生的论点是:'在我的静止帧中,蛇的速度为0.6c,因此我计算出蛇的长度收缩为80厘米,这意味着网的左边缘将恰好落在蛇的尾巴后面,而右边 轮缘将在其头部前方降落20厘米,而我会在不伤害蛇的情况下抓蛇。'

蛇的回答是:'我长100厘米,网以0.6c的速度接近我,所以网的宽度缩小到80cm。 如果网的左边缘撞到我尾巴后面的桌子,那么右边缘将撞到我并折断我的背部,您将遇到很多麻烦!'

蛇会受到伤害或不会受到伤害,因此无论是蛇还是学生都是错误的。 我们如何解决这个矛盾?

令S为学生的其余部分,令S'为蛇的其余部分。 在S中,将x = 0设为网的左边缘在时间t = 0碰到桌子的点,这恰好与蛇尾通过x = 0的确切时刻相吻合。 在S'(蛇静止的帧)中,令x'= 0为蛇尾的位置。 令t₀和t₁为左右边缘在S中击中桌子的时间,令x₀和x₁为边缘在表中打击的位置。

然后,t₀=t₁= 0s,x₀= 0cm,x₁= 100cm。 对于v = 0.6c,γ= 1.25。 通过洛伦兹变换:

相对论思考

所以蛇是错的。 在蛇的静止帧中,网的右边缘比左边缘早2.5纳秒命中桌子。 的确,网的边缘在蛇的静止框架中仅相隔80厘米,但由于边缘不在蛇的框架中同时落下,因此击中桌子的点相距125厘米。

这是蛇真正看到的东西。 两条边缘相距80厘米,以0.6c的速度接近蛇。 右侧边缘在t'=-2.5ns处撞到桌子,位置在蛇尾巴前125cm或蛇头前25cm处。 此时,左边缘仍在蛇的上方,位于蛇尾巴前45厘米处。 在t'= 0s处,经过2.5纳秒后,左边缘将朝着蛇尾巴的方向移动0.6c * 2.5ns = 45cm,这时左边缘撞到了蛇尾巴后面的桌子上。 两条边都没有碰到蛇。

这条蛇是错误的,因为它忽略了同时性的相对性:在一个参考系中同时发生但在不同位置的两个事件A和B在任何其他参考系中都不会同时发生。 此外,将存在A优先于B的框架和B优先于A的框架。这不会违反因果关系的不变性,因为这两个事件均不会导致另一个事件,因为如果A和B同时发生,但发生在不同的位置且A 如果导致B,那么这将需要信号以无限的速度从A位置传播到B位置,这是不可能的。

您可能已经注意到了一个小问题:击球台后,网的右边缘继续以0.6c的速度接近蛇。 由于右边缘仅在蛇的前面25cm处撞到桌子,如果蛇在其头部到达右边缘时停止,则左边缘仍将在蛇的尾部20cm处撞蛇。 这会破坏我们的整个论点吗?

否。假设蛇的头部在到达右侧边缘时停止转动。 这将发生在大约t'=-1.39ns。 即使我们假设蛇是完全僵硬的,此时尾巴也不会停止,因为蛇头的停止与蛇尾的停止有因果关系,因此蛇尾在信号发出之前不会停止(神经冲动) (例如弹性冲击波等),其传播速度不超过光速,它从头部传播到尾巴。 如果一条蛇停下来是因为沿着它的长度仅在一个点上发生了一个事件,则蛇的整个长度不可能同时停下来。 蛇在此帧中的长度为一米,信号以光速传播一米距离所花费的时间约为3.33纳秒,因此蛇的尾巴会持续运动很多时间,以避免被蛇的左边缘击中。 互联网。

孪生悖论

考虑两个相同的双胞胎宇航员。 第一位宇航员A留在地球上,第二位宇航员B进行了一次任务,前往大约5光年远的Alpha Centauri。 B的飞船离开地球,迅速加速到0.9c(从地球测量),当B到达半人马座Alpha时,她停下来,转身,然后加速回到0.9c,返回地球。 假定加速度非常快,以使B几乎以恒定速度度过整个行程。 A将观察到整个旅程需要九年,但是在B的框架中,地球与半人马座之间的距离缩小了2倍,她看到半身人马座以0.9c的速度接近她,而在回程中她 看到地球以0.9c接近她,而对于她来说,整个往返仅用了4.5年,而当她返回地球时,她将比双胞胎年轻4.5岁。

这似乎与我们声称没有首选参考系的主张相矛盾:为什么只为B分配时间? B不能仅仅声称地球在从地球退回然后以0.9c返回时她保持静止吗?

答案是否定的,因为B经历了加速,而A没有经历。 她从与A相同的休息框开始,但随后加速进入另一个休息框,然后减速回到A的休息框。 与速度不同,加速度是绝对的,我们可以肯定地说A并未远离B加速。

快于光的激光点悖论

这是另一个著名的。

假设一个站在地球上的天文学家向月球发出非常强大的激光,其功率足以在月球表面产生一个可见点。 激光在0.01秒内扫描了3,393英里(考虑到表面的曲率),横越月球的赤道。 站在月球表面的观察者将看到该点在大约1.82c处冲过去。 但是,狭义相对论不是说没有什么能比c快吗? 我们在理论上发现了致命的缺陷吗?

不,我们没有,因为狭义相对论并没有说'没有什么能比光传播得快。 狭义相对论告诉我们,一个事件如果导致第一个事件以大于c的速度向第二个事件的位置发送信号,则不会导致另一个事件。 在此示例中,激光点能够以比光速更快的速度从点A传播到点B,因为点A处的点出现不会导致点后来出现在点B处。 我们考虑狭义相对性告诉我们有关旋转框架的信息,我们将能够明确证明存在一个参考框架,其中点在到达A之前就到达了B。

纺丝杆的加捻

作为最后的演示,我将介绍我的个人收藏之一。

在框架S'中,平行于x'轴的直圆柱杆以角速度ω旋转。 在框架S中,杆旋转并以速度+ vx向前移动。 我们将看到,在框架S中,杆绕其长度扭曲。

通过将杆划分为以单位距离Δx'= 1分隔的圆盘,在框架S'中开始。 将磁盘视为时钟,并在每个磁盘上画一个'指针',使指针完全平行。 这是S'中磁盘的外观:

相对论思考

在S'中,相邻的手正好同时击中黑线。 但是由于同时性的相对性,在任何其他框架中都不是这样。 因此,在给定Δx'= 1和Δt'= 0的情况下,我们使用逆Lorentz变换在观察者帧S中找到Δt:

相对论思考

这告诉我们,'时钟'上的相邻指针通过黑线之间存在γv/c²的时间延迟,并且由于ω是每只指针旋转一整圈的角频率,因此这意味着相邻指针是 偏移相角为γvω/c²。 注意,ω在两个帧中取相同的值,因为角运动发生在垂直于杆的速度方向的平面上。 忽略杆的向前运动,这就是时钟在框架S中的样子:

相对论思考

这告诉我们杆必须在框架S中绕其轴扭曲。下面的动画比较了杆在每个框架中的外观,左侧为S',右侧为S:

相对论思考

> Note: the intensity of the twisting is highly exaggerated.

杆不受任何形式的扭力或其他机械变形。 杆本身的几何形状在两个参考系之间是不同的。

结论和版权

您可能已经注意到,对于一篇有关物理学主题的文章,我们实际上并没有真正谈论任何物理学。 这确实是一篇关于几何的文章:时空本身的几何形状,就如何在时空上建立坐标系以及如何在坐标系之间进行转换,时空中定义的移动对象的行为的几何形状以及对 因果结构。 这是有意为之的:相对论是一个几何理论,如果不先了解基础的几何学就不可能完全理解和欣赏相对论物理学。 幸运的是,在这篇文章的续篇中,我们实际上将开始谈论一些实际的物理学。

本文中所有未引用的图像和动画都是我自己的原创作品。 这些不是我自己的图像的使用受公平使用准则的保护。

蛇的演示是一个示例问题的变体,该问题出现在泰勒,扎菲拉托斯和杜布森的《现代物理学家和工程师的第二版》中。 扭杆的例子是沃尔夫冈·林德勒(Wolfgang Rindler)第二版的《狭义相对论简介》中的一个问题。

(本文翻译自Panda the Red的文章《Thinking Relativistically》,参考:https:///@notaredpanda/thinking-relativistically-77fde6c8808e)

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多