分享

延寿20%!真没想到,水果中富含的黄酮类物质竟是“衰老克星”...

 飞行模式iwnl9o 2020-06-13

@怀瑾

复旦药理学硕士

朋克养生点读机





图-秦朝徐福东渡场景,山东省淄博市齐文化博物馆

相传秦始皇3次遣徐福东渡寻长寿仙药,徐福寻至日本八丈岛,发现岛上有一种伞形科、多年生草本,叶子被摘掉后马上长出新叶,名为明日叶(Ashitaba)。





图-徐福眼中的“仙岛”日本八丈岛

明日叶美味且营养丰富,传闻可延年益寿,徐福踏破铁鞋终得“仙药”,哪知带回交差途中,秦皇就病去了。倘若秦皇吃了明日叶,是否得以续命,历史就要被改写?





图-明日叶

现代科学证明,明日叶有抗衰老功效。今年初《自然·通讯》报道,明日叶主要成分4,4’-二甲氧基查耳酮(DMC)可显著延长线虫、果蝇、人类细胞的最大寿命约20%。





不知日本民众寿命全球第一(84岁余)是否和明日叶中DMC有关?其实DMC属于黄酮类化合物大家族,有近5000名“兄妹”,近来的抗衰老明星槲皮素、大豆异黄酮,以及大票植物提取物(蓝莓、绿茶、石榴、杨梅树皮)都属于黄酮类化合物。

本系列文章共两篇,将携大家一窥“仙药家族”黄酮类化合物的渊源和疗效。


元末明初有诗:“金凤花开色更鲜,佳人染得指头丹。”古代女子用凤仙花染指甲,凤仙花就是彼时的“指甲油”, 黄酮的发现和古人运用植物汁液作天然染料相关





图-凤仙花(古代“指甲油”)

19世纪末,植物中的一些色素被分离鉴定并确定了化学结构,科学家命名这些色素为“黄酮(Flavonoids)”。

黄酮自命名来,一直被当作植物色素研究,直到1930s,学者们才惊觉某些黄酮化合物对人体有益,开始关注其生物学效应。





1980s到现在,是生物学日新月异的三十年,黄酮也随之获得较大研究进展。促使人们研究黄酮的动机是:大家普遍认为多吃瓜果蔬菜有利健康,而几乎所有果蔬都含有黄酮类化合物。

听起来挺牵强……但科学不就是“用严谨的方法论证祖宗传下来的智慧”吗?上世纪末科学家进行了大样本流行病研究,果然发现:饮食黄酮的量与冠心病、中风和癌症发病负相关

黄酮类化合物成分天然、安全、有效,简直是“完美”保健品标配,因此报告出来后,食品/保健品公司的合约蜂拥而至,大量黄酮类物质(或黄酮添加食品)流行病学、临床研究如雨后春笋。这个圈子,终于“繁荣”了起来。

黄酮类化合物的化学结构各有特色,但都与下图结构类似:





图-黄烷

该化学式名为黄烷,由三个“环”相连构成,最核心的环是中间的C环,从C环的氧原子开始给黄烷结构编号,根据不同编号的取代基团不同,黄酮被分为不同种类。

01

黄酮类化合物的分类

黄烷→黄烷酮→黄酮

在黄烷化学结构基础上,4位添羰基(O=)的化合物称黄烷酮; 在黄烷酮化学结构的基础上,2,3位添C=C双键的化合物称黄酮:

其他衍生分类

多种从黄酮、黄烷酮衍生的黄酮类化合物,其基本结构式如下:





图-黄酮类化合物的分类

各类黄酮的食物来源

1)黄酮:

黄酮类是黄酮类化合物的重要亚群之一,主要包括:木犀草素、芹菜素和柑橘素等[15],黄酮的本质是糖苷。

芹菜、欧芹、红辣椒、甘菊、薄荷和银杏叶等是黄酮类化合物的主要来源。





2)黄酮醇:

黄酮醇类化合物可能是水果和蔬菜中最常见和最大的黄酮亚群,主要包括山奈酚、槲皮素、杨梅素、非瑟酮,在各种水果和蔬菜中含量非常丰富[16]。

洋葱、甘蓝、生菜、西红柿、苹果、葡萄和浆果富含黄酮醇;茶和红酒也是黄酮醇的来源。





3)黄烷酮:

黄烷酮包括橙皮素、柚皮苷、圣草酚等,通常存在于各种柑橘类水果中。柑橘果肉酸甜,但果皮常常有苦涩味道,就是因为其果皮富含黄烷酮的缘故。

富含黄烷酮的水果有橘子、橙子、橘柑、柠檬、葡萄等。





图-橙皮的“苦涩”来源于黄酮

4)异黄酮:

异黄酮类化合物是黄酮类化合物的一个独特的亚群。我们听说异黄酮时,通常闻其“大豆异黄酮”之名,之所以“大豆”二字常与异黄酮捆绑,就是因为异黄酮分布十分有限,几乎局限于大豆和某些豆科植物中





植物生长需要微生物,但微生物也可能带来感染,异黄酮在豆科植物利用(同时拮抗)微生物的过程中起重要抗毒抗菌作用;对人类而言,异黄酮也有临床运用潜力,被认为是“植物来源的雌激素”

5)儿茶素:

儿茶素是黄烷酮的3-羟基衍生物,其化学分子结构上能发生多种取代反应,变成不同的儿茶素亚型,是多种多样的群体。

儿茶素分为儿茶素、表儿茶素、矢车菊素等,在香蕉、苹果、蓝莓、桃子和梨等植物中含量比较丰富。





6)花色素:

花儿为什么这样红?因为花色素。





花色素是负责蔬菜、花卉、水果颜色的色素,但也神奇的具有生物效应。

花色素在不同酸碱度下呈不同颜色;在花色素的A、B环上进行甲基或酰基取代也会改变其成色。





花色素常见分类有花青苷、飞燕草苷、麦维丁、天竺葵苷和牡丹苷等,主要存在于蔓越莓、黑加仑子、红葡萄、梅洛葡萄、覆盆子、草莓、蓝莓、越桔和黑莓等水果的细胞外层。





7)查耳酮:

查尔酮类化合物主要包括根皮苷、熊果苷、根皮素和柑橘查尔酮等,在番茄、梨、草莓、熊果和某些小麦制品中含量非常丰富。

02

黄酮化合物的吸收

各种黄酮类化合物在生物体的吸收利用度差别很大,可以说自然界存在的黄酮类,大多吸收很差。

黄酮化合物吸收过程





1) 口服的黄酮在口腔发生水解修饰,随后由食道进入胃部,但难以被胃消化;黄酮进入小肠后,有两种转运吸收途径,上皮刷状缘LPH转运体介导[10]和上皮细胞SGLH转运体介导的转运[11];

2) 小肠吸收后的黄酮入血,通过肝门静脉进入肝脏,像大多数“药物”一样发生II期代谢,代谢物随后进入体循环;循环过程中,胆汁中的代谢物通过肾脏经尿液排出,或通过胆汁肝肠循环再次进入小肠[12,13];

3) 小肠中的残余黄酮代谢物可继续下行,到大肠部位,大肠有很多肠道菌群,这些菌群多元地处理黄酮为更容易吸收的产物,主要处理方式包括:还原、脱羧、脱羟基、去甲基化[14,15];

4) 大肠的菌群处理后的产物被吸收,最后,代谢废物也经肾脏由尿液排出。

黄酮化合物吸收差

黄酮类化合物大多数以黄酮糖苷形式存在,少量以黄酮糖苷元形式游离于自然界中。黄酮糖苷亲水性强,脂溶性差,在胃部和小肠吸收有限,大多依赖大肠肠道菌群加工。

黄酮糖苷元可看做大肠微生物“加工”黄酮糖苷的产物,吸收利用度是糖苷的数倍,所以目前生产上也将黄酮糖苷生物加工成苷元以提高利用度。

03

黄酮类化合物生物加工





黄酮类化合物的生物转化手段主要包括微生物转化及基于植物组织细胞培养的生物转化。

1) 微生物转化是利用微生物进行反应,利用微生物产生的一种或几种酶作为生物催化剂,将黄酮转化成为别的物质。生物转化反应具有选择性强、催化效率高、反应条件温和、反应种类多样以及环境污染小等优点。

2) 植物中有多种特异酶,可催化黄酮产成多种新型化合物,相比微生物转化的产物更多样,因此植物培养的生物转化对黄酮类药物的研制意义更大。

近年来,上述生物加工技术被广泛用于包括黄酮在内的各种天然化合物合成、修饰和改造,成为了获得新结构、低毒性和高活性药物的低成本途径。




时光派点评


本文引入了“黄酮类化合物是一大类低吸收率化合物”的概念。

黄酮作为广泛存在于瓜果蔬菜中的化合物,和日常生活息息相关,近来人们越来越多观察到其健康裨益,从而推动了相关研究的发展。天然黄酮的吸收利用率一直让人头疼,好在有生物技术加持,人们已可以显著提高生物利用度。

黄酮类化合物如何抗老,能不能延长我们的寿命,这些问题我们在第二篇将进行讨论。

参考文献

1. Rodriguez-Mateos, A., et al., Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol, 2014. 88(10): p. 1803-53.

2. Polyphenols, A concise overview on the chemistry, occurrence, and human health.

3. Kim Y, Je Y. Flavonoid intake and mortality from cardiovascular disease and all causes: A meta-analysis of prospective cohort studies[J]. Clinical Nutrition ESPEN, 2017,20:68-77.

4. Feliciano R P, Pritzel S, Heiss C, et al. Flavonoid intake and cardiovascular disease risk[J]. Current Opinion in Food Science, 2015,2:92-99.

5. Jiang W, Wei H, He B. Dietary flavonoids intake and the risk of coronary heart disease: a dose-response meta-analysis of 15 prospective studies[J]. Thromb Res, 2015,135(3):459-463.

6. Williamson G. The role of polyphenols in modern nutrition[J]. Nutrition Bulletin, 2017,42(3):226-235.

7. Yang B, Yang J, Liu H, et al. New insights on bioactivities and biosynthesis of flavonoid glycosides[J]. Trends in Food Science & Technology, 2018,79:116-124.

8. Xiao J, Muzashvili T S, Georgiev M I. Advances in the biotechnological glycosylation of valuable flavonoids[J]. Biotechnology Advances, 2014,32(6):1145-1156.

9. Cao H, Chen X, Jassbi A R, et al. Microbial biotransformation of bioactive flavonoids[J]. Biotechnology Advances, 2015,33(1):214-223.

10. Day AJ, Canada FJ, Diaz JC, Kroon PA, McLauchlan R, Faulds CB, Plumb GW, Morgan MR, Williamson G (2000) Dietary flavo- noids and isoflavones glycosides are hydroylysed by the lactase site of lactase phloridzin hydrolase. FEBS Lett 468:166–170

11. Gee JM, DuPont SM, Day AJ, Plumb GW, Williamson G, Johnson IT (2000) Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. J Nutr 130:2765–2771

12. Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A (2013b) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18:1818–1892

13. Actis-Goretta L, Lèvéques A, Rein M, Teml A, Schäfer C, Hofmann U, Li H, Schwab M, Eichelbaum M, Williamson G (2013) Intestinal absorption, metabolism, and excretion of (−)-epicat- echin in healthy humans assessed by using an intestinal perfu- sion technique. Am J Clin Nutr 98:924–933

14. Jaganath IB, Mullen W, Edwards CA, Crozier A (2006) The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radic Res 40:1035–1046

15. Stalmach A, Mullen W, Barron D, Uchida K, Yokota T, Steiling H, Williamson G, Crozier A (2009) Metabolite profiling of hydrox- ycinnamate derivatives in plasma and urine following the inges- tion of coffee by humans: identification of biomarkers of coffee consumption. Drug Metab Dispos 37:1759–1768

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多