分享

《測圓海鏡》之髙差、旁差、極雙差等式﹝諸差2﹞

 瀟湘館112 2021-02-19

測圓海鏡髙差旁差極雙差等式﹝諸差2

上傳書齋名:瀟湘館112  Xiāo Xiāng Guǎn 112

何世強 Ho Sai Keung

提要:《測圓海鏡》之“圓城圖式”含十四勾股形,連同原有之大勾股形共十五勾股形。本文著重諸勾股形有關三邊之差之等式,例如髙差旁差極雙差平差虛差虛雙差明雙差

關鍵詞:髙差旁差極雙差平差虛差

《測圓海鏡》乃金‧李冶所撰,書成於 1248 年,時為南宋淳祐八年。該書卷一“圓城圖式”主要討論與十五勾股形相關之等式,本文介紹其部分等式並作出証明。

本文所引用之勾股式源自“圓城圖式”之十五勾股形,a1b1c1 乃最大勾股形天地乾之勾、股及弦長。故 a1b1c1 又稱為大勾﹝地乾﹞、大股﹝天乾﹞及大弦﹝天地﹞。

《測圓海鏡》涉及一系列之勾股恆等式,所有恆等式皆與十五勾股形有關。十五勾股形中最大者為天地乾,其三邊勾股弦分別以 a1b1c1 表之,其餘十四勾股形三邊勾股弦則分別以 aibici 表之,其中 1 < i 15。但 aibici 均可以 a1b1c1 表之,此乃《測圓海鏡》之精注意勾股定理成立,即 ai2 + bi2 = ci2

有關以 a1b1c1 aibici 之式可參閱筆者另文〈測圓海鏡》“圓城圖式”之十二勾股弦算法〉。

本文著重十五勾股形有關三邊之差之等式。

以下左為“圓城圖式”右為“圓城圖式十五句股形圖”

注意圓徑為 a1 + b1c1,見上圖之東南西北圓。圓徑乃十五勾股形三邊重要因子之一,其他因子為最大勾股形之勾股較、勾弦較及股弘較。

本文主要談及十五勾股形有三邊相差之等式,其中部分等式曾在“五和五較”等式中出現,可參閱筆者相關之文章。

注意等式 (c1b1)(c1a1) = (a1 + b1c1)2

以下為有關諸差之式:

髙差內減平差為旁差邊差內減底差亦同上明差內減差亦同上大差差內減小差差為二旁差黃廣差內減黃長差亦同上

極雙差即明二弦共內加虛雙差即明二和共內減虛雙差即明雙差雙差共也內加旁差即極弦內少個虛弦旁差差內減旁差即虛和也內加虛差即極弦內少二內減虛差則極弦內少二明勾也

以下為各條目之証明:

髙差內減平差為旁差

髙差”指髙弦在勾股形天日旦 6 日山朱7上勾股較

髙弦上勾股較= b6a6 = (a1 + b1c1) – (a1 + b1c1)

= (a1 + b1c1)(– 1)

= (a1 + b1c1)(b1a1)

平差”指平弦在勾股形月川青 8 川地夕 9上勾股較。

平弦上勾股 = b8a8 = (a1 + b1c1) –(a1 + b1c1)

= (a1 + b1c1)(1 –)

=(a1 + b1c1)(b1a1)

髙差內減平差﹝以髙差為被減數﹞,即:

(a1 + b1c1)(b1a1) –(a1 + b1c1)(b1a1)

=(a1 + b1c1)(b1a1)[]

= (a1 + b1c1)(b1a1)(b1a1)

=  (a1 + b1c1)(b1a1)2

------------------------------------------

旁差”又傍差”,據《測圓海鏡》所云,*二差較名傍差。“”指勾股較,“明差”指明弦上之勾股較,其餘類推。

明差 = b14a14 = (c1a1)(b1 c1 + a1) – (c1a1)(b1 c1 + a1)

= (c1a1)( a1 + b1c1)[]

* = b15a15 = (c1b1)(a1c1 + b1) – (c1b1)(a1c1 + b1)

=(c1b1)( a1 + b1c1) []

二差 = 明差*

= (c1a1)( a1 + b1c1)[] – (c1b1)( a1 + b1c1) []

= ( a1 +b1c1)[][(c1a1) – (c1b1)]

= (a1 + b1c1)(b1a1)

= (a1 + b1c1)

----------------------------------

以上之式是為“。所以髙差內減平差 = 旁差

邊差內減底差亦同上

邊差”指“邊弦上勾股較”,“邊弦上勾股較”指 b2a2在勾股形天川西 2

b2a2 = (c1 + b1a1) – (c1 + b1a1)

= (c1 + b1a1) (1 –)

= (c1 + b1a1)(b1a1)

底差”指“底弦上勾股較”,而“底弦上勾股較”指 b3a3在勾股形日地北 3

b3a3 = (a1b1 + c1) –(a1b1 + c1)

=(a1b1 + c1)( – 1)

=(a1b1 + c1)(b1a1)

邊差內減底差,即:

(c1 + b1a1)(b1a1) –(a1b1 + c1)(b1a1)

= (b1a1)[(c1 + b1a1) –(a1b1 + c1)]

= (b1a1)[a1(c1 + b1a1) – b1(a1b1 + c1)]

= (b1a1)[a1c1 + a1b1a12b1a1 + b12b1c1]

= (b1a1)[a1c1a12+ b12b1c1]

= (b1a1)[a1c1a12+ b12b1c1]

= (b1a1)[(b1a1)(b1 + a1) – c1(b1a1)]

= (b1a1)(b1a1)[(b1 + a1) – c1]

= (b1a1)2(b1 + a1c1)

比較答案兩式,可知相等,所以邊差內減底差 =

明差內減差亦同上

*二差較名傍差,見前文。*二差較明差內減明差內減《測圓海鏡》之定義。

大差差內減小差差為二旁差

大差差”指大差在勾股形天月坤 10勾股較,勾股較即勾股差。

大差上勾股 = b10a10 = (c1 a1) –(c1 a1)

= (c1 a1)(1 – )

= (c1 a1)(b1a1)

小差差”指小在勾股形山地艮 11勾股較。

小差上勾股= b11a11 = – (c1b1) + (c1b1)

= (c1b1)(– 1)

= (c1b1)(b1a1)

大差差內減小差差,即:

(c1 a1)(b1a1) –(c1b1)(b1a1)

= (b1a1)[(c1 a1) –(c1b1)]

= (b1a1)[ a1(c1 a1) – b1(c1b1)]

= (b1a1)(a1c1 a12b1c1 + b12)

= (b1a1)[(b1a1)(b1 + a1) – c1(b1a1)]

= (b1a1)(b1a1)[(b1 + a1) – c1]

= (b1a1)2(b1 + a1c1)

二旁差= 2 ×(b1a1)2(b1 + a1c1) = (b1a1)2(b1 + a1c1)

比較兩式可知相同,所以大差差內減小差差 = 二旁差

黃廣差內減黃長差亦同上

黃廣差在勾股形天山金 4﹞指黃廣弦之勾股較。

金山 ﹝又勾﹞:a4 = (a1 + b1c1) × 2 = a1 + b1c1

天金股﹝又股﹞:b4 = = (a1 + b1c1)

黃廣勾股 = b4a4 = (a1 + b1c1) – (a1 + b1c1)

= (a1 + b1c1)(– 1)

= (a1 + b1c1)(b1a1)

黃長差在勾股形月地泉 5﹞指黃長弦之勾股較。

月泉股﹝又黃長股﹞:b5 = (a1 + b1c1) × 2 = a1 + b1c1

泉地勾﹝又黃長勾﹞:a5 = = (a1 + b1c1)

勾股 = b5a5 = (a1 + b1c1) –(a1 + b1c1)

= (a1 + b1c1)(1 –)

= (a1 + b1c1)(b1a1)

黃廣差內減黃長差,即:

(a1 + b1c1)(b1a1) –(a1 + b1c1)(b1a1)

= (a1 + b1c1)(b1a1)[]

= (a1 + b1c1)(b1a1)(b1a1)

= (a1 + b1c1)(b1a1)2

所以黃廣差內減黃長差 = 二旁差﹝見前式﹞

極雙差即明二弦共

所謂“極雙差”乃指日心股之勾弦差及股弦差之和,是為“雙差”。

已知c12 =(a1 + b1c1)股:b12 = (a1 + b1c1)

a12 = (a1 + b1c1)

以下為勾弦差及股弦差:

c12a12 =(a1 + b1c1) –(a1 + b1c1) = (a1 + b1c1)[– 1]

c12b12 =(a1 + b1c1) –(a1 + b1c1) = (a1 + b1c1)[– 1]

雙差 = 即以上兩式之和,即:

(a1 + b1c1)[– 1] + (a1 + b1c1)[– 1]

= (a1 + b1c1)(c1a1) + (a1 + b1c1)(c1b1)

= (a1 + b1c1)(c1a1 + c1b1)

= (a1 + b1c1)(2c1a1b1)

日月為明弦﹝簡﹞:c14 =(c1a1)(b1 c1 + a1)

山川﹝簡﹞:c15 =(c1b1)(a1c1 + b1)

二弦共 = c14 + c15

c14 + c15 =(c1a1)(b1 c1 + a1) + (c1b1)(a1c1 + b1)

= (b1 c1 + a1)[ (c1a1) + (c1b1)]

= (a1 + b1c1)(2c1a1b1)

比較答案兩式,可知相等,所以極雙差 = 二弦共

內加虛雙差即明二和共

虛雙差”即太虛勾弦較太虛股弦較之和在勾股形月山泛 13

已知太虛勾弦較 = c13a13 = (c1b1)(c1a1) –(c1b1)(c1a1)

= (c1b1)(c1a1)[– 1]

= (c1b1)(c1a1)(c1a1)

= (c1b1)(c1a1)2

太虛股弦較= c13b13 = (c1b1)(c1a1) – (c1b1)(c1a1)

= (c1b1)(c1a1)[– 1]

= (c1a1)(c1b1)(c1b1)

= (c1a1)(c1b1)2

所以虛雙差 = (c1b1)(c1a1)2 + (c1a1)(c1b1)2

= (c1a1)(c1b1)[(c1a1) + (c1b1)]

= (c1a1)(c1b1)(2c1a1b1)

= (a1 + b1c1)2(2c1a1b1)

所以極雙差 +虛雙差,即:

 (a1 + b1c1)(2c1a1b1) + (a1 + b1c1)2(2c1a1b1)

=(a1 + b1c1)(2c1a1b1)[c1 + a1 + b1c1]

= (a1 + b1c1)(2c1a1b1)(a1 + b1)

又已知“明和”即明弦勾股和 = b14 +a14在勾股形日月南 14,即:

 b14 + a14= (c1a1)(b1 c1 + a1) +(c1a1)(b1 c1 + a1)

= (c1a1)(b1 c1 + a1)[+]

=(c1a1)(b1 c1 + a1)(a1 + b1)

*和”即*弦上勾股和 = b15 +a15 在勾股形山川東 15,即:

b15 + a15 = (c1b1)(a1c1 + b1) +(c1b1)(a1c1 + b1)

= (c1b1)(a1c1 + b1)(+)

= (c1b1)(a1c1 + b1)(b1 + a1)

二和共,即:

(c1a1)(b1 c1 + a1)(a1 + b1) + (c1b1)(a1c1 + b1)(b1 + a1)

= (b1 c1 + a1)(a1 + b1)[ (c1a1) + (c1b1)]

= (a1 + b1c1)(2c1a1b1)(a1 + b1)

比較兩式可知相同,所以極雙差內加虛雙差 = 二和共

內減虛雙差即明雙差雙差共也

本條指極雙差內虛雙差

極雙差虛雙差,即:

 (a1 + b1c1)(2c1a1b1) – (a1 + b1c1)2(2c1a1b1)

=(a1 + b1c1)(2c1a1b1)[c1a1b1 + c1]

= (a1 + b1c1)(2c1a1b1)2

明弦在勾股形日月南 14勾弦較=c14a14

c14a14 = (c1a1)(b1 c1 + a1) –(c1a1)(b1 c1 + a1)

=(c1a1)(b1 c1 + a1)[– 1]

=(b1 c1 + a1)(c1a1)(c1a1)

=(b1 c1 + a1) (c1a1)2

明弦股弦 = c14 b14

= (c1a1)(b1 c1 + a1) – (c1a1)(b1 c1 + a1)

= (c1a1)(b1 c1 + a1)[– 1]

=(c1a1)(b1 c1 + a1)(c1b1)

所以明雙差

= (b1 c1 + a1) (c1a1)2 + (c1a1)(b1 c1 + a1)(c1b1)

= (b1 c1 + a1) (c1a1)[(c1a1) + (c1b1)]

= (b1 c1 + a1) (c1a1) (2c1a1b1)

*弦上勾弦= c15a15

= (c1b1)(a1c1 + b1) – (c1b1)(a1c1 + b1)

= (c1b1)(a1c1 + b1)[ – 1]

= (c1b1)(b1 + a1c1)[c1a1]

= (c1b1)(c1a1)(b1 + a1c1)

*弦上股弦 = c15b15

c15b15= (c1b1)(a1c1 + b1) –(c1b1)(a1c1 + b1)

= (c1b1)(a1c1 + b1)[– 1]

= (c1b1)(a1c1 + b1)(c1b1)

= (c1b1)2(a1c1 + b1)

*弦上雙差

= (c1b1)(c1a1)(b1 + a1c1) + (c1b1)2(a1c1 + b1)

= (c1b1)(b1 + a1c1)[(c1a1) + (c1b1)]

= (c1b1)(b1 + a1c1)(2c1a1b1)

明雙差雙差共

= (b1 c1 + a1) (c1a1) (2c1a1b1) +
(c1b1)(b1 + a1c1)(2c1a1b1)

=(b1 + a1c1)(2c1a1b1)[(c1a1) + (c1b1)]

= (a1 + b1c1)(2c1a1b1)[c1a1b1 + c1]

= (a1 + b1c1)(2c1a1b1)2

所以極雙差內減虛雙差 = 明雙差 +雙差

內加旁差即極弦內少個虛弦旁差差

已知極雙差 = (a1 + b1c1)(2c1a1b1)

旁差 = (b1a1)2(b1 + a1c1)

本條指極雙差內加旁差

=(a1 + b1c1)(2c1a1b1) +(a1 + b1c1)

= (a1 + b1c1)[c1(2c1a1b1) + (b1a1)2]

= (a1 + b1c1)[2c12c1a1c1b1 + a12 + b12 – 2b1a1]

= (a1 + b1c1)[3c12c1a1c1b1 – 2b1a1]

又已知太虛c13 =(c1b1)(c1a1)

所以虛弦旁差,即:

(c1b1)(c1a1) –(b1a1)2(b1 + a1c1)

= (b1 + a1c1)2(b1a1)2(b1 + a1c1)

= (b1 + a1c1)[c1(b1 + a1c1) – (b1a1)2]

= (b1 + a1c1)[c1b1 + c1a1c12b12a12 + 2b1a1]

 = (b1 + a1c1)[c1b1 + c1a1 – 2c12 + 2b1a1]

日川皇極弦﹝簡皇極﹞:c12 = (a1 + b1c1)

極弦內少個虛弦旁差,即:

(a1 + b1c1) –(b1 + a1c1)[c1b1 + c1a1 – 2c12 + 2b1a1]

= (b1 + a1c1)[c12 – (c1b1 + c1a1 – 2c12+ 2b1a1)]

= (b1 + a1c1)(c12c1b1c1a1 + 2c12 – 2b1a1)

= (a1 + b1c1)[3c12c1a1c1b1 – 2b1a1]

比較兩式,可知極雙差內加旁差 = 極弦內少個虛弦旁差

內減旁差即虛和也

本條指極雙差內減旁差,即:

(a1 + b1c1)(2c1a1b1) – (a1 + b1c1)

= (a1 + b1c1)[c1(2c1a1b1) – (b1a1)2]

= (a1 + b1c1)[2c12c1a1c1b1a12b12 + 2b1a1]

= (a1 + b1c1)[c12c1a1c1b1 + 2b1a1]

= (a1 + b1c1)[a12 + b12c1a1c1b1 + 2b1a1]

= (a1 + b1c1)[(a1 + b1)2c1(a1 + b1)]

= (a1 + b1c1)(a1 + b1)(a1 + b1c1)

= (a1 + b1c1)2(a1 + b1)

= (c1b1)(c1a1) (b1 + a1)

注意等式 (c1b1)(c1a1) = (a1 + b1c1)2

虛和太虛勾股和

太虛勾股和=b13 + a13 = (c1b1)(c1a1) +(c1b1)(c1a1)]

= (c1b1)(c1a1)[+]

= (c1b1)(c1a1)(b1 + a1)

所以極雙差內減旁差 = 虛和

內加虛差即極弦內少二

”指太虛勾股在勾股形月山泛 13

太虛勾股 = b13a13 = (c1b1)(c1a1) –(c1b1)(c1a1)]

= (c1b1)(c1a1)[]

=(c1b1)(c1a1)(b1a1)

極雙差內加虛差,即:

(a1 + b1c1)(2c1a1b1) + (c1b1)(c1a1)(b1a1)

= (a1 + b1c1)(2c1a1b1) + (a1 + b1c1)2(b1a1)

= (a1 + b1c1)[c1(2c1a1b1) + (a1 + b1c1)(b1a1)]

= (a1 + b1c1)(2c12c1a1c1b1 + b12a12c1b1 + c1a1)

= (a1 + b1c1)(2c12 – 2c1b1 + b12a12)

= (a1 + b1c1)(2a12+ 2b12 – 2c1b1 + b12a12)

= (a1 + b1c1)(a12+ 2b12 – 2c1b1 + b12)

= (a1 + b1c1)(c12+ 2b12 – 2c1b1)

已知c12 =(a1 + b1c1)

山東﹝又﹞:b15 = (c1b1)(a1c1 + b1)

極弦內少二,即:

(a1 + b1c1) – 2 × (c1b1)(a1c1 + b1)

= (a1c1 + b1)[– (c1b1)]

= (a1 + b1c1)(c12 – 2c1b1 + 2b12)

所以極雙差內加虛差 = 極弦內少二

內減虛差則極弦內少二明勾也

本條即極雙差內減虛差,即:

(a1 + b1c1)(2c1a1b1) – (c1b1)(c1a1)(b1a1)

= (a1 + b1c1)(2c1a1b1) – (a1 + b1c1)2(b1a1)

= (a1 + b1c1)[c1(2c1a1b1) – (a1 + b1c1)(b1a1)]

= (a1 + b1c1)(2c12c1a1c1b1b12 + a12 + c1b1c1a1)

= (a1 + b1c1)(2c12 – 2c1a1b12 + a12)

= (a1 + b1c1)(2a12+ 2b12 – 2c1a1b12 + a12)

= (a1 + b1c1)(3a12+ b12 – 2c1a1)

= (a1 + b1c1)(c12+ 2a12 – 2c1a1)

已知c12 =(a1 + b1c1)

南月勾﹝又﹞:a14 =(c1a1)(b1 c1 + a1)

極弦內少二明勾,即:

(a1 + b1c1) – 2 × (c1a1)(b1 c1 + a1)

= (a1 + b1c1)[– (c1a1)]

= (a1 + b1c1)(c12+ 2a12 – 2c1a1)

比較答案兩式,可知相等,所以極雙差內減虛差 = 極弦內少二明勾

以下為測圓海鏡細草原文:

    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章