分享

ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集【特征列分段→独热编码】进行回归预测(房价预测)+预测新数据得分

 处女座的程序猿 2021-09-28

ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集【特征列分段→独热编码】进行回归预测(房价预测)+预测新数据得分

导读
对Boston(波士顿房价)数据集进行特征工程,分别使用特征列分段技术、独热编码技术,然后利用xgboost算法进行预测,发现的确能够进一步提高预测结果。


相关文章
ML之XGBR:利用xgboost算法对Boston(波士顿房价)数据集【特征列分段→独热编码】进行回归预测(房价预测)

输出结果

设计思路

核心代码

XGBR = XGBRegressor()  
cv_split = ShuffleSplit(n_splits, train_size, test_size) 
XGBR_grid = GridSearchCV(XGBR, grid_params, cv=cv_split)

class XGBRegressor(XGBModel, XGBRegressorBase):
    # pylint: disable=missing-docstring
    __doc__ = "Implementation of the scikit-learn API for XGBoost regression.\n\n" + '\n'.join
     (XGBModel.__doc__.split('\n')[2:])

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章