文章题目:Co-varying neighborhood analysis identifies cell populations associated with phenotypes of interest from single-cell transcriptomics 日期:2021-10-21 期刊:nature biotechnology 链接:https://www./articles/s41587-021-01066-4
方法描述
我们一般进行细胞分群时会进行降维聚类,这个方法也是为了分群,但它认为聚类的方法一般需要假设数据很好地捕获到生物信息,而且聚类的方法一般都需要反复调整聚类参数(比如resolution)。这个方法的核心是”邻域“(定义是very small regions in transcriptional space),再根据不同样本中邻域的共同特性去整合数据。
划分依据: every other cell m′ belongs to the neighborhood anchored at cell m according to the probability that a random walk in the graph from m′ will arrive at m after s steps。
运行速度大大提高:CNA has favorable runtime properties: given a nearest neighbor graph, computing the NAM and conducting permutation-based association testing takes less than 1 min (and 579 MB of memory) for a dataset of more than 500,000 cells and more than 250 samples.