分享

1887年,德国物理学家赫兹第一次发现,当电磁辐射(光)照在某些金属上时,金属会发出电子。

 新用户59986244 2022-03-07
1887年,德国物理学家赫兹第一次发现,当电磁辐射(光)照在某些金属上时,金属会发出电子。这件事情本身并不特别值得注意。金属的一个特性就是,它的某些电子只是松散地束缚在原子里(这也是为什么金属是良好的导电体)。光照在金属表面时,会将能量释放出来,就像在阳光下我们会觉得皮肤暖洋洋的。这些能量会激发起金属里的电子,一些松动的电子就可能完全脱离金属表面跑出来。

但是,当我们更仔细地来研究射出电子的性质时,光电效应的奇异特征就表现出来了。乍看起来,你可能以为如果光的强度增大了(光更亮了),射出的电子的速度就会增大,因为入射电磁波的能量大了。但事实不是这样的。虽然这时候射出的电子的数目增大了,但它们的速度并没有改变。另一方面,实验却发现,在入射光的频率增大时,射出电子的速度确实会增大;同样的,如果光的频率降低了,电子的速度也会减小。(对电磁波谱的可见部分来说,频率的增大相当于光从红色变到橙色、黄色、绿色、蓝色、青色,最后到紫色。频率比紫色光更高的是看不见的紫外线,然后是X射线;频率比红光还低的光是看不见的红外辐射。)实际上,如果入射光的频率减小了,会出现射出电子为零的情形。这时不论光源多么强大炫目,电子都只停留在金属表面。由于某种未知的原因,入射光的颜色——而不是总能量——决定着电子是否发射出来,并且决定着射出电子的能量。

1905年,爱因斯坦对上述的“光电效应”找到了一个解释,因为这个发现,他获得了1921年的诺贝尔物理学奖。爱因斯坦建议用普朗克的波动能量包来重新描绘光的图景。在他看来,一束光其实可以认为是一股光粒子流——后来化学家刘易斯为光的微粒起了一个好听的名字,光子。为了有一个数量的感觉,我们拿灯泡为例。根据光的粒子观,一只普通100瓦的灯泡每秒钟大概会发出1万亿亿(10^20)个光子。爱因斯坦用这个新概念提出了光电效应背后的微观机制:他指出,当一个电子被足够能量的一个光子击中时,它就会从金属表面逃逸出来。那么,是什么决定单个光子的能量呢?爱因斯坦跟着普朗克的引导,提出每个光子的能量正比于光波的频率(比例因子是普朗克常数)。光子必须具备一定的能量才可能将电子从金属表面解放出来。(一个电子几乎不可能同时被几个光子击中——大多数电子根本碰不上光子。)假如入射光的频率太低了,每个光子就没有足够力量激活电子。低频的光束(从而低能量的一个个光子)不论多强,也解放不了一个电子。只要照在金属表面的光有足够的能量,电子就可以脱离出来。一定频率的光束也可以通过增加光子数来增大总的强度,光子越多,脱离金属表面的电子也越多。不过请注意,从金属表面逃逸出来的电子的能量余额仅取决于击中它的光子的能量——而这能量是由光束的频率(而不是总强度)决定的。每个解放的电子带着相同的能量——也就是具有相同的速度——不论照射的光有多强。更多的总能量也不过是多解放一些电子。如果想让逃逸的电子跑得更快,我们必须提高入射光的频率——就是说,增大照在金属表面的单个光子所具有的能量。

这些都与实验事实完全一致。光的频率(颜色)决定着射出电子的速度;光的总强度决定着射出的电子的数量。这样,爱因斯坦证明了,普朗克的能量包猜想实际上反映了电磁波的一个基本特性:电磁波由粒子即光子组成,是一束光的量子。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多