之前我们发过一篇文章,但是有朋友看了表示有疑惑,问小编:为什么当 能否给个令人心服口服的证明呢? 小编说:一般的高数书上应该有讲啊。 朋友追问:高数书上只证明了(1)式,而且挺复杂的,要用到那个极限的夹逼准则,不太直观,能否直观讲一讲? 经过思考之后,我给出了如下证明过程。 先来看弧度制下的情形。 如下图,设有长度为 根据 从B点作CD的垂线BE,则 那么,若 为了清楚的说明这个问题,首先要解决的一个问题是:若角度分别用度与弧度表示,它们的函数表示该如何区分? 要知道,现在我们有两种不同的角度制,一个叫度,一般写作 作为三角函数, 但现在问题来了, 问题是,当自变量符号 让弧度制优先用 好了,现在来看 根据弧度与度的关系, 但这样做,你一定不要将这里的 实际上,如果不想晕,你只要依旧承认弧度制的优先地位,对度制的三角函数,发明一种新的符号,例如 讲到这里,我得意的回头看了看老A。 但老A却摸了摸脑袋说,他当然相信这些都是对的!但直觉上又觉得,既然弧度和度是角度的两种平等的单位制,那么仅仅变换单位制,怎么会影响自身的规律的形式呢? 听到他这么说,我哑然失笑:这厮学物理学傻了。 他大概率将数学公式与物理规律一样对待了! 果不其然,他反手就举了牛顿方程的例子 我说,虽然你眼里看到的是物理公式,但你心里想的是物理规律,既然你相信物理规律不变,所以你自然觉得它总是一样的。 但实际上,你看到的是物理公式,它与物理规律是两码事。物理公式本质上就是数学公式。 当你采用不一样的单位制时,物理量之间的数值关系也一样变了!所以,不同的单位制下,物理规律不会变,但物理公式肯定会变。 例如,采用国际单位制时,库仑定律是 另一个例子是法拉第电磁感应定律,正是因为采用国际单位制,它才有如下简单的形式 单位制的选择不光会影响物理公式的比例,甚至还会在原有的物理公式中加上或减去一个东东。例如采用摄氏度作为温度的单位时,理想气体的压强和温度的关系为 当采用开尔文作为温度单位,即定义 再举个例子,光速不变是狭义相对论的一条基本规律,但光速到底等于多少,这是人为定义的。当我们选择国际单位制时,它的值为299792.458km/s,当采用不同的单位时,它的值当然就不是这么多了! 所以说嘛,单位制的改变,当然会改变物理公式的样子!但是,物理规律是不会变的,因为它是客观的嘛。 听我这么一讲,老A似乎有点明白了。但他还是有点不甘心,他说,弧度和度是地位相当的两种角度单位,为什么一个导致如此简单的关系,另一个却变得复杂呢? 那么,弧度和度真的地位相当的吗? 当然不是! 从它们与长度的关系可以看出差别。 如下图,半径长为1的一段弧,假设它对应的角度记为 当 而当角度值 看到了吧,你可以认为弧度和度相当,但从它们与弧长的关系上可以看出,弧度数值本身就是弧长,而度的数值需要经过换算后才得到弧长。 有人可能会说,干嘛要让度来迁就弧长?让弧长来迁就度不行吗?就将弧长记录为半径与角度的乘积,不同的角度单位得到不同的数值的弧长!换句话说,重新定义一个弧长的单位叫做“米 看起来挺不错,这样从半径到弧长,与弧度制一样,不再需要换算的系数了! 例如,一个半径为1米,对应角度为45度的弧长,就记作为 很显然,半径为45米,对应角度为1度的弧长也是这么大,看起来没什么问题,因为事实上,它们的弧长的确是一样的。 但现实中,我们时刻需要比较和度量各种曲线和直线的长度,它们既然都是长度,必定都属于同一种物理量描述的东西,具有确定的量纲。 什么叫量纲? 简单的说,就是物理量的单位的共性。 用来度量同一个物理量的不同单位,具有同样的量纲,为了方便,这个量纲就用物理量符号加中括号表示。 例如公斤、克和磅都是质量单位,因此它们的量纲是质量,记作 量纲之间可以通过乘除得到新的量纲。例如,根据牛顿第二定律,可以得力的量纲为 有一种特殊的量,它的值是没有量纲的纯数字,我们称之为无量纲量,也可以说它的量纲为1。 因此,按照量纲规则,上述定义的弧长的量纲既然是长度乘以角度,如果角度的量纲不为1,那所得的弧长必然就不再具有长度量纲了! 这导致一个奇怪的问题:既然你采用了另一个不同于长度量纲的物理量来度量弧长,那说明弧长与半径的长度是不同的东西! 这是一件不可思议的事情,就好比你把一根直铁丝完成弧形,它的长度变成另一个东西了! 在采用度制时,它的数值和量纲都变了! 在采用弧度制时,虽然弧长的数值符合经验要求——直铁丝完成弧形后,弧长数值保持与之前直线的长度数值相等。但问题是,既然弧长等于半径乘以弧度,那么弧长的量纲也是长度乘以角度,仍然不具有长度量纲! 换句话说,弧度与度一样,都会导致弧长变成与长度不一样的东西啊! 但直觉告诉我们,一根直铁丝弯成弧形,它的长度应该是不变的啊! 那怎么办呢? 你可能也发现了,将角度视为无量纲量就行了!这样,弧长和半径就具有同样的量纲——长度! 正如前面提到的那个例子,你手握一根直铁丝,弯成弧形,无论它的半径是多少,可以肯定相比之前的直线,弧的长度没变啊!这个直觉告诉我们,直线和弧的长度是同一个东西,量纲必然相同嘛! 所以,角度是一个无量纲的量,或者也可以说,它的量纲为1。 必须要强调的是,量纲是物理量的基本属性,描述的对象是物理量。所以,角度无量纲,决定了它的单位也就是无量纲单位。 很多人以为,度不像弧度那样是纯数,所以度应该有量纲。这种理解是错误的!度和弧度一样,是角度这个无量纲的物理量的不同单位制。 例如,若角度 可见,将角度定义为无量纲的量后,弧度制下,计算不需要额外转换,多出一个因子 所以,弧度制优于度制! 另外,再拓展一下。 弧度表示的角度不局限于平面角,也适用于立体角。如下图所示,球面上的一部分面积相对球心张开的角度就是立体角。 立体角的弧度制定义为面积与对应半径的平方的比,即 实际上,你还可以将角度推广到更高维的情形,只不过它总是等于两个同样幂次的长度量纲相除,量纲相除的结果总是1,所以它总是无量纲的。 ![]() END ![]() 转载内容仅代表作者观点 不代表中科院物理所立场 来源:大学物理学 |
|