分享

论文推介丨经济环保型工程水泥基复合材料力学性能研究进展

 昵称50786598 2023-11-05 发布于江西
图片

题目:经济环保型工程水泥基复合材料力学性能研究进展

作者:李曈,任庆新,王庆贺

单位:沈阳建筑大学土木工程学院;佛山科学技术学院交通与土木建筑学院

关键词:工程水泥基复合材料;再生废弃材料;胶凝材料;骨料;纤维;力学性能

基金项目:国家自然科学基金(51808351);沈阳市科学技术计划项目(21-108-9-34)

出处:硅酸盐通报,2023,42(10):3421-3431

由水泥、粗细骨料、水和外加剂拌和而成的混凝土已经成为应用最为广泛的建筑材料。然而,普通混凝土(NC)由于存在抗拉强度低和脆性大等劣势,已经无法满足建筑设施对建筑材料性能日益增长的需求。为解决这一问题,高性能混凝土(HPC)和超高性能混凝土(UHPC)凭借自身超高的强度与优异的耐久性逐渐代替NC应用于工程建筑。然而,更高的强度也带来了更大的脆性,从抗震的角度出发,应用脆性大的建筑材料不利于结构安全。为了降低建筑结构的整体脆性,高韧性的工程水泥基复合材料(ECC)孕育而出,因具有优异的延展性能、独特的应变硬化行为和多重开裂特性,已经逐渐引起人们的广泛关注。《硅酸盐通报》2023年第10期发表了来自沈阳建筑大学等单位的综述《经济环保型工程水泥基复合材料力学性能研究进展》(第一作者李曈,通信作者任庆新)。本文回顾了现阶段利用本地原材料或再生废弃材料制备ECC的研究成果,从胶凝材料、骨料、增强纤维材料角度讨论了ECC的力学性能,探究了作用机理,以期为ECC的发展应用提供参考。

01

ECC力学性能

ECC是一种特殊纤维(通常体积掺量为2%)增强复合材料,能够提高建筑物的弹性和耐久性能。根据配合比不同,其抗压强度在40~210 MPa,与纤维增强混凝土(FRC)相当。然而,其延展性能可达到FRC的500倍。此外,由于优异的裂缝控制能力(见图1),即使在开裂状态下ECC仍然能够保持一定的耐久性能,且具有自修复能力。

图片

图1 ECC典型拉伸应力应变曲线以及裂缝发展模式和裂缝形态[10]

02

胶凝材料对ECC力学性能的影响

从FRC发展而来的ECC的独特性能是通过优化胶凝基质与纤维材料间的黏结性能实现的,因此胶凝材料的选择是ECC破坏模式由脆性破坏转化为韧性破坏的关键。

通常,ECC水胶比在0.24以上,胶凝材料主要由普通硅酸盐水泥(OPC)和粉煤灰(FA)组成。为了满足强度要求的同时获得优异的延展性,FA与OPC质量比在1.2~8.0。ECC强度与胶凝材料中OPC所占比例呈正相关,但高掺量OPC会对ECC的拉伸变形能力产生不利影响。当OPC被水化活性较低的FA所取代时,胶凝基质与纤维之间黏结力下降,使纤维破坏模式发生了改变,更多纤维材料由断裂破坏转变成了拔出破坏,这赋予了ECC更大的延展性能。

OPC生产过程中会排放大量CO2,这给环境带来了极大的负担,因此急切寻找补充胶凝材料(SCMs)作为OPC的部分替代品。偏高岭土和细石灰石粉已经被证实是优异的SCMs,尤其是当两种材料共同使用时所形成的石灰石煅烧黏土水泥(LC3),基体更加密实,LC3-ECC在各养护期龄的抗压强度均低于OPC-ECC。

考虑环境和经济因素,使用其他材料甚至是废弃材料代替OPC或者FA生产ECC已经成为研究热点。矿渣微粉(GGBFS)作为SCMs,可提高ECC的承载能力,但对其延展性能会产生不利影响。同样,利用拆除过程中的再生细粉末(RFP)作为SCMs的可行性已被证实。

另外,已有研究人员使用地质聚合物完全替代OPC开发出了一种特殊绿色ECC——工程地质聚合物复合材料(EGC),这种地质聚合物的性能差异取决于所用碱性材料和激发材料的种类和配合比,两者间的反应会产生一种活性化合物,其黏结特性类似于硅酸钙凝胶。

03

骨料对ECC力学性能的影响

基于微观力学理论设计的ECC通常不包含粗骨料,为了减少胶凝材料用量并提高基体体积稳定性,增加胶凝基质与纤维间黏结能力,提高复合材料拉伸变形能力,保证应变硬化行为和多重开裂特性的发生,经常使用平均粒径为110 μm、最大粒径约为250 μm的微硅砂(MSS)作为生产ECC的原材料。但是,MSS产地有限,长距离运输增加了材料使用成本和CO2排放量,另一方面,随着MSS需求增加,自然可用的原材料也终会消耗殆尽,可能会面临资源短缺等问题。此外,微小粒径的MSS骨料会对ECC收缩变形和弹性模量产生负面影响,这些因素限制了ECC的广泛应用。然而,使用粒径尺寸较大的骨料会影响纤维材料分散均匀性,降低胶凝基质与纤维间黏结力。因此,选用合适的骨料是成功制备出满足性能要求ECC的关键。

骨料颗粒特征可以通过三个独立属性来描述:表面纹理、形态和棱角,这些特征对ECC性能发挥有很大影响。此外,骨料的密度、化学成分和粒径分布也是决定材料性能的关键因素。因此选择更加经济、环保,且易获得的骨料以替代MSS生产ECC已成为研究热点。目前,已有研究人员采用橡胶颗粒(CR)、河砂(RS)、沙漠砂(DS)、甘蔗灰(SCBA)、再生沥青(RAS)、再生玻璃(GL)、铁矿石尾矿(IOTs)、石灰石粉(LSP)或再生砖粉(RBP)等骨料制备了ECC,不同骨料各有利弊。

随着绿色再生水泥基复合材料概念的推广,人们对水泥基复合材料的研究不再是仅追求高性能,而是向高性能、高经济性、高环保效益的方向发展,使用废弃材料生产水泥基复合材料已逐步成为研究热点。但需要注意的是,一些具有环保效益的废弃材料在收集和前期处理过程中需要使用复杂的工艺和设备,这造成一些能源和资源浪费,增加了生产成本,环保效益也大打折扣,如何更加科学、高效地处理这些废弃骨料,使其达到使用要求,是当前研究热点。

04

纤维材料对ECC力学性能的影响

在水泥基复合材料中加入纤维材料能够有效抑制裂缝扩展,提高复合材料的综合性能。而性能的改善程度主要取决于掺入纤维材料的物理性能,如长细比、抗拉强度、伸长率、弹性模量和表面粗糙程度等,此外,与纤掺掺量也有关系。目前,通常使用价格昂贵的PVA作为ECC的增强材料,但使用PVA时需在表面涂油以削弱胶凝基质与纤维间的黏结力,防止纤维发生断裂破坏,从而保证ECC优异的延展性能。但这也增加了生产成本,限制了ECC在实际工程中的应用。因此,在保证满足建筑结构性能需求前提下,寻找其他种类的纤维材料以代替PVA生产ECC十分重要。

PE生产工艺简单,抗拉强度高,且具有良好的耐化学性能,已有研究人员使用PE生产出了抗拉强度达到10 MPa且抗压强度超过100 MPa的高强ECC;BF被认为是一种高性能绿色无机纤维材料,由于良好的力学性能、优异的耐高温和耐腐蚀性能,且具有回收再利用的潜力,使用BF作为增强材料制备ECC具有良好的应用前景;PP也被证实是可以用来生产ECC的纤维材料之一,与表面涂油的PVA相比,PP生产工艺更简单,原材料更容易获得,且价格更便宜,虽然PP-ECC的韧性与延展性能稍弱于PVA-ECC,但其也表现出了应变硬化行为和多重开裂特征。

ECC的裂缝控制能力直接反映了其耐久性能,图2比较了PVA-ECC、PE-ECC、BF-ECC和PP-ECC在单轴拉伸作用后的平均裂缝宽度和平均裂缝间距。可以看出:BF-ECC具有最小的平均裂缝宽度,PE-ECC和PP-ECC的平均裂缝宽度均大于PVA-ECC;PE-ECC、BF-ECC和PP-ECC的裂缝相比于PVA-ECC更加紧密。因此,PE、BF和PP均具有代替PVA制备ECC的应用潜力。

图片

图2 PVA-ECC、PE-ECC、BF-ECC和PP-ECC试件破坏模式的比较[24]

除了传统的商业纤维外,已有研究表明,使用价格更低、产量更加丰富,且生产过程更加环保的天然纤维可以制备出满足工程需要的ECC。此外,随着回收资源再利用技术的发展,利用一些再生纤维替代传统纤维作为复合材料的增强材料已被证明是可行的。

本文从胶凝材料、骨料和纤维材料的角度出发,回顾了近些年来众多学者利用不同原材料制备ECC的可行性研究,可以得出如下结论:

1)根据配合比不同,ECC抗压强度在40~210 MPa,延展性能可达到FRC的500倍以上。此外,ECC具有优异的裂缝控制能力,当材料拉伸应变超过1%时,裂缝宽度仅为60 μm,即使在开裂状态下依然能保持一定的耐久性能,且具有自修复能力。

2)通常ECC的水胶比在0.24以上,胶凝材料由OPC和FA组成,两者质量比在1.2~8.0,ECC强度与胶凝材料中OPC所占比例呈正相关,但高掺量的OPC会对拉伸应变能力产生不利影响;从经济性与环保效益的角度出发,使用一些如偏高岭土、石灰石粉末、矿渣微粉和再生混凝土细粉末等SCMs作为OPC的部分替代品,甚至使用地质聚合物完全替代OPC,所制备出的ECC表现出了令人满意的性能。

3)骨料的物理性能,如表面纹理、形态、棱角、粒径分布等,这些因素决定了ECC基体的孔隙结构、胶凝基质与纤维材料间的黏结性能,是影响ECC力学性能的关键。为了降低生产成本,促进ECC广泛应用,已有研究人员使用如橡胶颗粒、河砂、再生沥青等材料代替MSS制备出了满足性能要求的ECC。

4)纤维的物理性能、使用掺量决定了其在基体中的分布状况,直接影响了胶凝基质与纤维间的黏结性能。通常使用PVA作为增强材料以制备ECC,但已有研究人员使用其他种类纤维,甚至是再生纤维制备出了与PVA-ECC力学性能相当的复合材料。

考虑到未来ECC发展以及实际工程需求,对日后ECC研究提出以下展望:

1)由于ECC性能的敏感性,成功制备出满足工作性能要求、具有应变硬化行为和多重开裂特性的复合材料绝非易事,这对原料质量提出了更高的要求,在考虑经济因素,使用当地材料或再生废弃材料生产ECC过程中,如何采用更加环保的方式处理骨料中的夹杂物,以消除其对ECC力学性能造成的负面影响是十分重要的。

2)虽然使用一些废弃材料制备ECC已在试验阶段初有成效,在保证性能发挥同时,又体现了经济性。但不同产地、不同生产处理方式所得到的材料,其物理性能与化学组成往往存在较大差异。因此,在选择材料时,要结合工程实际需求,综合考虑生产成本和当地原料特性。

参考文献(上下滑动阅览)

[1] 甘磊, 吴健, 沈振中, 等. 硫酸盐和干湿循环作用下玄武岩纤维混凝土劣化规律[J]. 土木工程学报, 2021, 54(11): 37-46.

[2] 赵燕茹, 刘芳芳, 王磊, 等. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12):12064-12069.

[3] 莫金旭, 曾磊, 郭帆, 等. 橡胶粉对聚丙烯纤维混凝土力学性能和微观结构的影响[J]. 建筑材料学报, 2020, 23(5): 1222-1229.

[4] O’HEGARTY R, KINNANE O, NEWELL J, et al. High performance, low carbon concrete for building cladding applications[J]. Journal of Building Engineering, 2021, 43: 102566.

[5] LUHAR S, CHAUDHARY S, LUHAR I. Development of rubberized geopolymer concrete: strength and durability studies[J]. Construction and Building Materials, 2019, 204: 740-753.

[6] SHAIKH F U A, LUHAR S, AREL H Ş, et al. Performance evaluation of ultrahigh performance fibre reinforced concrete: a review[J].Construction and Building Materials, 2020, 232: 117152.

[7] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264.

[8] LI V C. On engineered cementitious composites (ECC): a review of the material and its applications[J]. Journal of Advanced Concrete Technology, 2003, 1(3): 215-230.

[9] ŞAHMARAN M, LI V C. Durability of mechanically loaded engineered cementitious composites under highly alkaline environments[J]. Cement and Concrete Composites, 2008, 30(2): 72-81.

[10] ŞAHMARAN M, LI V C. Durability properties of micro-cracked ECC containing high volumes fly ash[J]. Cement and Concrete Research,2009, 39(11): 1033-1043.

[11] YILDIRIM G, ALYOUSIF A, ŞAHMARAN M, et al. Assessing the self-healing capability of cementitious composites under increasing sustained loading[J]. Advances in Cement Research, 2015, 27(10): 581-592.

[12] AL-DAHAWI A, YILDIRIM G, OZTURK O, et al. Assessment of self-sensing capability of engineered cementitious composites within the elastic and plastic ranges of cyclic flexural loading[J]. Construction and Building Materials, 2017, 145: 1-10.

[13] LEPECH M D, LI V C. Water permeability of cracked cementitious composites[C]//Proceedings 11th International Conference on Fracture, 2005: 4539-4541.

[14] LI V C. Engineered cementitious composites (ECC): material, structural and durability performance[M]//Concrete Construction Engineering Handbook. Boca Raton: CRC Press, 2007: 24-28.

[15] SAHMARAN M, LI V C, ANDRADE C. Corrosion resistance performance of steel-reinforced engineered cementitious composite beams[J]. ACI Materials Journal, 2008, 105(3): 243-250.

[16] LIU H Z, ZHANG Q, LI V, et al. Durability study on engineered cementitious composites (ECC) under sulfate and chloride environment[J]. Construction and Building Materials, 2017, 133: 171-181.

[17] LI V C, HORIKOSHI T, OGAWA A, S, et al. Micromechanics-based durability study of polyvinyl alcohol-engineered cementitious composite[J]. ACI Materials Journal, 2004, 101(3): 242-248.

[18] HE S, QIU J S, LI J X, et al. Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers[J]. Cement and Concrete Research, 2017, 98: 50-60.

[19] ZHANG Z G, YUVARAJ A, DI J, et al. Matrix design of light weight, high strength, high ductility ECC[J]. Construction and Building Materials, 2019, 210: 188-197.

[20] LI L Z, CAI Z W, YU K Q, et al. Performance-based design of all-grade strain hardening cementitious composites with compressive strengths from 40 MPa to 120 MPa[J]. Cement and Concrete Composites, 2019, 97: 202-217.

[21] CHOI J I, SONG K I, SONG J K, et al. Composite properties of high-strength polyethylene fiber-reinforced cement and cementless composites[J]. Composite Structures, 2016, 138: 116-121.

[22] RANADE R, LI V C, STULTS M D, et al. Rushing, composite properties of high-strength, high-ductility concrete[J]. ACI Materials Journal, 2013, 110: 413-422.

[23] YU J, LI H D, LEUNG C K Y, et al. Matrix design for waterproof engineered cementitious composites (ECCs)[J]. Construction and Building

Materials, 2017, 139: 438-446.

[24] XU M F, SONG S, FENG L, et al. Development of basalt fiber engineered cementitious composites and its mechanical properties[J]. Construction and Building Materials, 2021, 266: 121173.

[25] WANG S, LI V C. Engineered cementitious composites with high-volume fly ash[J]. ACI Materials Journal, 2007, 104(3): 233-268.

[26] YANG E, YANG Y, LI V C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness[J]. ACI Materials Journal, 2007, 104(6): 620-628.

[27] XU H Y, SHAO Z M, WANG Z J, et al. Experimental study on mechanical properties of fiber reinforced concrete: effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber[J]. Construction and Building Materials, 2020, 261: 120610.

[28] LIU Q, TONG T, LIU S H, et al. Investigation of using hybrid recycled powder from demolished concrete solids and clay bricks as a pozzolanic supplement for cement[J]. Construction and Building Materials, 2014, 73: 754-763.

[29] SUN Z H, LIU F J, TONG T, et al. Hydration of concrete containing hybrid recycled demolition powders[J]. Journal of Materials in Civil Engineering, 2017, 29(7): 04017037.

[30] ZHANG D, JAWORSKA B, ZHU H, et al. Engineered cementitious composites (ECC) with limestone calcined clay cement (LC3)[J]. Cement and Concrete Composites, 2020, 114: 103766.

[31] FERREIRO S, HERFORT D, DAMTOFT J S. Effect of raw clay type, fineness, water-to-cement ratio and fly ash addition on workability and strength performance of calcined clay-limestone Portland cements[J]. Cement and Concrete Research, 2017, 101: 1-12.

[32] DHANDAPANI Y, SAKTHIVEL T, SANTHANAM M, et al. Mechanical properties and durability performance of concretes with limestone calcined clay cement (LC3)[J]. Cement and Concrete Research, 2018, 107: 136-151.

[33] ÖNER M, ERDO ˇGDU K, GÜNLÜ A. Effect of components fineness on strength of blast furnace slag cement [J]. Cement and Concrete Research, 2003, 33(4): 463-469.

[34] SRIKANTH S, KRISHNA C B R, SRIKANTH T, et al. Effect of nano ground granulated blast furnace slag (GGBS) volume % on mechanical behaviour of high-performance sustainable concrete[J]. Journal of Nanomaterials, 2022, 2022: 1-5.

[35] CHEN Z T, YANG Y Z, YAO Y. Quasi-static and dynamic compressive mechanical properties of engineered cementitious composite incorporating ground granulated blast furnace slag[J]. Materials & Design, 2013, 44: 500-508.

[36] OHNO M, LI V C. An integrated design method of engineered geopolymer composite[J]. Cement and Concrete Composites, 2018, 88: 73-85.

[37] MANGAT P, LAMBERT P. Sustainability of alkali-activated cementitious materials and geopolymers [M]//Sustainability of Construction Materials. Amsterdam: Elsevier, 2016: 459-476.

[38] PUERTAS F, ALONSO M M, GISMERA S, et al. Rheology of cementitious materials: alkali-activated materials or geopolymers[C]//MATEC Web of Conferences, 2018, 149: 01002.

[39] NEUPANE K. Fly ash and GGBFS based powder-activated geopolymer binders: a viable sustainable alternative of Portland cement in concrete industry[J]. Mechanics of Materials, 2016, 103: 110-122.

[40] SHI C J, JIMÉNEZ A F, PALOMO A. New cements for the 21st century: the pursuit of an alternative to Portland cement[J]. Cement and Concrete Research, 2011, 41(7): 750-763.

[41] JUENGER M C G, WINNEFELD F, PROVIS J L, et al. Advances in alternative cementitious binders[J]. Cement and Concrete Research, 2011, 41(12): 1232-1243.

[42] NATH S K, MAITRA S, MUKHERJEE S, et al. Microstructural and morphological evolution of fly ash based geopolymers[J]. Construction and Building Materials, 2016, 111: 758-765.

[43] YAN H D, SUN W, CHEN H S. The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete[J]. Cement and Concrete Research, 1999, 29(3): 423-426.

[44] LI V C, MISHRA D K, WU H C. Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites[J]. Materials and Structures, 1995, 28(10): 586-595.

[45] LI V C. Integrated structures and materials design[J]. Materials and Structures, 2007, 40(4): 387-396.

[46] BENTUR A, IGARASHI S I, KOVLER K. Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates[J]. Cement and Concrete Research, 2001, 31(11): 1587-1591.

[47] SAHMARAN M, LACHEMI M, HOSSAIN K M A, et al. Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites[J]. ACI Materials Journal, 2009, 106(3): 308-316.

[48] GAO S L, WANG Z, WANG W C, et al. Effect of shrinkage-reducing admixture and expansive agent on mechanical properties and drying shrinkage of engineered cementitious composite (ECC)[J]. Construction and Building Materials, 2018, 179: 172-185.

[49] SOROUSHIAN P, NAGI M, HSU J. Optimization of the use of lightweight aggregates in carbon fiber reinforced cement[J]. ACI Materials Journal, 1992, 89(3): 267-276.

[50] MARTINS A C P, FRANCO DE CARVALHO J M, COSTA L C B, et al. Steel slags in cement-based composites: an ultimate review on characterization, applications and performance[J]. Construction and Building Materials, 2021, 291: 123265.

[51] ANDRADE H D, DE CARVALHO J M F, COSTA L C B, et al. Mechanical performance and resistance to carbonation of steel slag reinforced concrete[J]. Construction and Building Materials, 2021, 298: 123910.

[52] ADESINA A, DAS S. Performance of engineered cementitious composites incorporating crumb rubber as aggregate[J]. Construction and Building Materials, 2021, 274: 122033.

[53] LI Y Z, GUAN X C, ZHANG C C, et al. Development of high-strength and high-ductility ECC with saturated multiple cracking based on the flaw effect of coarse river sand[J]. Journal of Materials in Civil Engineering, 2020, 32(11): 04020317.

[54] LI Y Z, LI J X, YANG E, et al. Investigation of matrix cracking properties of engineered cementitious composites (ECCs) incorporating river sands[J]. Cement Concrete Composites, 2021, 123: 104204.

[55] 李祚, 姚淇耀, 朱圣焱, 等. 乌兰布和沙漠砂制备高延性水泥基复合材料的力学性能[J]. 硅酸盐通报, 2021, 40(4): 1103-1115.

[56] SUBEDI S, ARCE G A, NOORVAND H, et al. Properties of engineered cementitious composites with raw sugarcane bagasse ash used as sand replacement[J]. Journal of Materials in Civil Engineering, 2021, 33(9): 4021231.

[57] ZHOU Y W, GONG G Q, HUANG Y J, et al. Feasibility of incorporating recycled fine aggregate in high performance green lightweight engineered cementitious composites[J]. Journal of Cleaner Production, 2021, 280: 124445.

[58] ADESINA A, DAS S. Sustainable utilization of recycled asphalt as aggregates in engineered cementitious composites[J]. Construction and Building Materials, 2021, 283: 122727.

[59] ADESINA A, DAS S. Mechanical performance of engineered cementitious composite incorporating glass as aggregates[J]. Journal of Cleaner Production, 2020, 260: 121113.

[60] HUANG X Y, RANADE R, NI W, et al. Development of green engineered cementitious composites using iron ore tailings as aggregates[J]. Construction and Building Materials, 2013, 44: 757-764.

[61] TURK K, DEMIRHAN S. The mechanical properties of engineered cementitious composites containing limestone powder replaced by microsilica sand[J]. Canadian Journal of Civil Engineering, 2013, 40(2): 151-157.

[62] HEIKAL M, EL-DIDAMONY H, MORSY M S. Limestone-filled pozzolanic cement[J]. Cement and Concrete Research, 2000, 30(11): 1827-1834.

[63] 元成方, 李好飞, 王娣, 等. 水胶比对再生砖粉ECC工作性能和力学性能的影响[J]. 硅酸盐通报, 2021, 40(11): 3723-3729.

[64] ZHENG C C, LOU C, DU G, et al. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate[J]. Results in Physics, 2018, 9: 1317-1322.

[65] BISHT K, RAMANA P V. Sustainable production of concrete containing discarded beverage glass as fine aggregate[J]. Construction and Building Materials, 2018, 177: 116-124.

[66] WEI D, ZHU P H, YAN X C, et al. Potential evaluation of waste recycled aggregate concrete for structural concrete aggregate from freeze-thaw environment[J]. Construction and Building Materials, 2022, 321: 126291.

[67] NEDELJKOVIC' M, LUKOVIC' M, VAN BREUGEL K, et al. Development and application of an environmentally friendly ductile alkali-activated composite[J]. Journal of Cleaner Production, 2018, 180: 524-538.

[68] REDON C, LI V C, WU C, et al. Measuring and modifying interface properties of PVA fibers in ECC matrix[J]. Journal of Materials in Civil Engineering, 2001, 13(6): 399-406.

[69] 黄政宇, 李操旺, 刘永强. 聚乙烯纤维对超高性能混凝土性能的影响[J]. 材料导报, 2014, 28(20): 111-115.

[70] TURK K, DEMIRHAN S. Effect of limestone powder on the rheological, mechanical and durability properties of ECC[J]. European Journal of Environmental and Civil Engineering, 2017, 21(9): 1151-1170.

[71] LI V C. From micromechanics to structural engineering-the design of cementitous composites for civil engineering applications[J]. JSCE Journal of Structural Mechanics and Earthquake Engineering, 1993, 10(2): 37-48.

[72] YU K Q, DING Y, LIU J P, et al. Energy dissipation characteristics of all-grade polyethylene fiber-reinforced engineered cementitious composites (PE-ECC)[J]. Cement and Concrete Composites, 2020, 106: 103459.

[73] 姚淇耀, 陆宸宇, 罗月静, 等. PE/PVA纤维海砂ECC的拉伸性能与本构模型[J]. 建筑材料学报, 2022, 25(9): 976-983.

[74] ZHANG M R, FANG C Q, ZHOU S S, et al. Modification of asphalt by dispersing waste polyethylene and carbon fibers in it[J]. New Carbon Materials, 2016, 31(4): 424-430.

[75] PUNITH V S, VEERARAGAVAN A. Characterization of OGFC mixtures containing reclaimed polyethylene fibers[J]. Journal of Materials in Civil Engineering, 2011, 23(3): 335-341.

[76] YU K Q, YU J T, DAI J G, et al. Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers[J]. Construction and Building Materials, 2018, 158: 217-227.

[77] BRANSTON J, DAS S, KENNO S Y, et al. Mechanical behaviour of basalt fibre reinforced concrete[J]. Construction and Building Materials, 2016, 124: 878-886.

[78] 王振山, 邢立新, 吴波, 等. 硫酸腐蚀下玄武岩纤维掺量对混凝土耐久性能影响研究[J]. 建筑结构, 2020, 50(15): 91-95+46.

[79] 于泳, 朱涵, 朱学超, 等. 玄武岩纤维混凝土抗冲击性能研究[J]. 建筑结构学报, 2015, 36(增刊2): 354-358.

[80] FELEKOGLU B, TOSUN-FELEKOGLU K, RANADE R, et al. Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC[J]. Composites Part B: Engineering, 2014, 60: 359-370.

[81] LIN J X, SONG Y, XIE Z H, et al. Static and dynamic mechanical behavior of engineered cementitious composites with PP and PVA fibers[J]. Journal of Building Engineering, 2020, 29: 101097.

[82] SONG N X, SONG M, ZHANG Y L, et al. Study on mechanical performance of ECC reinforced by polypropylene fiber mixed with manufactured sand and carbon black (CBMSPP-ECC) based on response surface method[J]. Advances in Materials Science and Engineering, 2022, 2022: 1-10.

[83] 史建丽, 田砾, 赵铁军, 等. 天然纤维增强水泥基材料轴拉性能试验研究[J]. 混凝土与水泥制品, 2015(3): 55-57.

[84] 段焱侠, 董莪, 李发平, 等. 改性剑麻纤维对水泥砂浆的性能研究[J]. 武汉轻工大学学报, 2018, 37(3): 60-63+97.

[85] 杨政险, 李慷, 张勇, 等. 天然植物纤维预处理方法对水泥基复合材料性能的影响研究进展[J]. 硅酸盐学报, 2022, 50(2): 522-532.

[86] EHRENBRING H Z, PACHECO F, CHRIST R, et al. Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers[J]. Construction and Building Materials, 2022, 346: 128355.

长按识别

下载全文

责任编辑丨曹艳翠

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多