分享

噬菌体作为指示病毒的应用研究进展

 医学abeycd 2024-05-05 发布于湖北

摘要:噬菌体是一类专性侵染细菌的病毒,在形态大小、结构组成等生物特性上与高等生物病毒具有相似性,同时噬菌体实验室操作技术简单,安全性高,在培养、计数、稳定性和灵敏度等方面具有非常大的优势。因此,将噬菌体作为指示生物模拟或替代高等生物病毒的研究和应用已开始受到国内外研究人员的关注,并取得一定进展。本文论述了噬菌体作为指示病毒的优势,并对噬菌体在病毒过滤去除效果评价、消毒效果评价、病毒传播规律研究、环境及水质监测等领域的研究和应用进行了总结分析,综述了噬菌体在各领域应用的可行性证据、应用案例及难点问题,并结合噬菌体作为指示病毒的不足之处,对进一步以噬菌体作为指示病毒的研究和应用提出建议和展望。

关键词噬菌体    指示病毒    消毒效果评价    病毒去除评价    病毒传播规律研究    环境及水质监测    

Research progress in the application of bacteriophages as indicator viruses

SUN Tingli1 , HAN Yuru2 , WANG Qingbai1 , LI Yulian1 , XIE Xiaobao1      

Abstract: Bacteriophages, a group of viruses that infect bacteria, have common features with eukaryotic viruses in the biological properties, such as morphology, size, and structural composition. The laboratory operation on bacteriophages is simple and has high safety, which demonstrates great advantages in culture, counting, stability, and susceptibility. Therefore, the research and application of bacteriophages as the indicator viruses for simulating or substituting eukaryotic viruses has attracted wide attention with certain progress achieved. This paper introduces the advantages of bacteriophages as indicator viruses and summarizes the feasibility evidence, cases, and difficult problems of bacteriophages application in the virus removal evaluation, disinfection effect evaluation, research on virus transmission patterns, and environment and water quality monitoring. In addition, considering the shortcomings, this paper puts forward suggestions and prospects for the research and application of bacteriophages as indicator viruses in the future.

Keywordsbacteriophage    indicator virus    disinfection effect evaluation    virus removal evaluation    research on virus transmission patterns    environment and water quality monitoring    

近年来,以新冠、流感、猴痘等为代表的一系列病毒性疾病的高发频发,已经成为了世界性的公共卫生问题,造成了不可估量的经济损失和社会危害[1-3]。加强对病毒生命周期、传播规律、环境抗性等的研究,对于病毒性疾病的预防、控制和疫苗开发都具有积极的意义。在研究或评价的过程中,直接使用相关的病毒是非常理想的,但实际上却受到各种限制。运用具有广泛代表性、背景清晰、易操作的病毒来替代或指示某种或某类病毒对特定条件或环境因子的特性进行表征,是目前常用的技术手段[4-5]。噬菌体是一种细菌病毒,具有与高等生物病毒相似的生物学特性,又因其宿主的独特性,具有更高的安全性和可操作性[6-7]。因此将噬菌体作为高等生物病毒的指示生物或替代生物,已成为新的研究趋势并受到广泛关注。本文通过对目前国内外以噬菌体作为指示生物的研究和应用的情况进行总结分析,综述了噬菌体作为指示病毒的优势及可行性,以及病毒在过滤去除效果评价、消毒效果评价、病毒传播规律研究及水质和环境监测中的研究现状和进展,并对进一步以噬菌体作为指示病毒的研究和应用提供建议和参考。

1 噬菌体作为指示病毒的优势及可行性

一种合格的指示生物应具有充分的代表性和可操作性。根据病毒相关研究的需求,选择指示病毒时应主要考虑以下因素:(1) 大小及形状:在对病毒进行过滤去除或病毒迁徙需要通过空隙时,因体积受到限制和排除的情况;(2) 结构及表面特点:病毒表面亲疏水性、电荷等影响病毒的吸附与解吸过程、物质穿透病毒囊膜或衣壳进入核酸部分的可能性;(3) 抗逆性:病毒对环境或消毒剂的耐受程度,或在特定条件下的稳定性;(4) 易获得:使用指示病毒进行试验时,比较容易获得高浓度的病毒;(5)病毒株的购买和使用不受生物安全、伦理、操作技术等各种条件限制或限制较小;(6) 可操作:足够的灵敏性可以被检出,试验方法简单,结果稳定;(7) 安全,成本低廉。

高等生物病毒及噬菌体是目前常用的2类指示病毒[6-9],但是这2类指示病毒各有优缺点(表 1)。使用高等生物病毒特别是直接使用目标病毒进行研究,结果相对更直观、可靠。但是因为病毒具有致病性、高变异性、遗传多样性及宿主专一性,每一种毒株的培养和分析方法都有差异,且根据其生物安全等级要求,试验需在特定级别的生物安全实验室内进行。因此,使用高等试验病毒进行实验分析,成本高、周期长、难度大,导致其在相关的研究和应用方面受到了诸多限制。噬菌体是一种细菌病毒,其结构、大小、生物学特性等与高等生物病毒具有相似性(表 2)。因此,根据试验目的和机理,以噬菌体为指示病毒,进行基于病毒颗粒体积的病毒去除研究评价、基于对消毒剂或环境抗性强弱的消毒效果评价或基于相似生物学特性的病毒吸附、传播、迁移等的研究,都是符合逻辑的。同时,噬菌体安全性高、不会对人类致病,培养和计数方法简单、快速,灵敏度高,将其作为指示病毒应用于病毒的相关研究,也是非常可行的[10-16]

表 1. 两类指示病毒试验比较Table 1. Comparison of the assays between eukaryotic viruses and bacteriophages

ItemsEukaryotic virusesBacteriophages
Biosafety levelHigh, tests need to be performed in laboratories at a specific biosafety levelInnocuous, have no tropism for mammalian cells, do not need specific protections
Assays techniquesHigh degree of specificity, different assay systems are needed for the detection of each specific virusSimple, do not require specialized testing facilities or specific expertise
Assay periodLong, usually several weeks are required to obtain resultsShort, results are generally available in 1–2 d
CostExpensiveInexpensive
Cultivatable to high titersDifficult, some viruses are not cultivable in vitroCan be grown to higher titers quickly
SensitivityLimited, the small sample volumes used in viral infectivity assays may result in low concentrations of virus being undetected, yet these low levels of virus may be able to initiate infection in a susceptible hostHigh degree of sensitivity
Representativeness to the target virusRepresentative and intuitiveConditional

表 2. 几种典型指示病毒的特征Table 2. Characteristics of several typical indicator viruses that have been used

Indicator virusHostSize (nm)ShapeGenomeEnvelopeFamily
MS2[10]Escherichia coli27–34IcosahedralssRNANoLeviviridae
ΦX174[11]Escherichia coli25–27IcosahedralssDNANoMicroviridae
Φ6[12]Pseudomonas syringae80–100SphericaldsRNAYesCystoviridae
Influenza A virus[13]MDCK cell80–120SphericalssRNAYesOrthomyxoviridae
Human coronavirus 229E[14]Vero cell100–120SphericalssRNAYesCoronaviridae
Enterovirus 71[15]Vero cellAbout 30IcosahedralssRNANoPicornaviridae
Poliovirus-I, vaccine strain[16]Vero cell20–30IcosahedralssRNANoPicornaviridae

2 噬菌体作为指示病毒在各领域的应用2.1 用作过滤去除评价指示物

在生物技术领域,如疫苗、血液制品、防护服等制品中,病毒非常容易穿透过滤或防护装备,对人体造成伤害。通过过滤和拦截等技术手段,有效去除或阻断这些具有潜在危害的病毒,对于保障人们的健康至关重要。使用体积合适的噬菌体作为病毒过滤去除时的指示生物,评价和测试防护用具、医疗器材、滤网等对病毒的拦截和去除作用,是合理、可行而且必要的。

以Φ6噬菌体[1217]为例,由于其大小在80–100 nm左右,与哺乳动物逆转录病毒的大小相似,常被用作各类逆转录病毒的指示生物,测试医疗器械、滤膜、医用及个人防护用具等的过滤能力。使用单克隆抗体中的鼠白血病毒(murine leukemia virus, MULV)和Φ6噬菌体来挑战DV50的膜时,Φ6噬菌体减少的对数值略高于MULV;挑战聚醚砜(polyethersulfone, PES) omega 300KVR的超滤膜时,MULV和Φ6噬菌体减少的对数值相近[18]。Lytle等[19]研究了HIV-1、HSV-1及多种噬菌体如ΦX174、T7、Φ6的有效过滤孔径,结果发现,Φ6与HIV-1的病毒过滤孔径相近似。这表明,使用Φ6作为MULV和HIV-1的指示病毒用于测试评价制品的病毒过滤性能是可行的。

类似的研究还有使用MS2噬菌体检验高效空气过滤器的病毒去除效率及杀灭率[20-21]、饮用水超滤膜的过滤效果及破损情况[22]、静电纺纳米纤维膜的病毒去除率[23],PR722噬菌体用于评价颗粒大于50 nm的病毒颗粒[24]的过滤去除等。由于个人防护用品特别是计生用品安全防护性能的重要性,最坏状况(worst case)的提法也得到认可,例如使用体积小的噬菌体如ΦX174 (直径25 nm)来测试对体积较之大许多的病毒的过滤除去效果,可以得到高于测试值的实际除去效果[25]

这类用途的指示病毒已经被广泛采用。国际标准化组织(International Standard Organization, ISO)、美国材料与试验学会(American Society of Testing Materials, ASTM)等均已批准发布了相关标准,采用ΦX174作为血液制品传染病毒如HIV、HBV、HCV等的指示病毒,检测个人防护服或材料的防护性能[26-27];我国也制定了一些使用噬菌体ΦX174、MS2等用于评价口罩、空气净化器等病毒过滤效率的标准[28-29]

根据目前的研究和应用现状可知,在选用此类噬菌体进行病毒过滤效果评价时,应充分了解被测物品的特点,选择粒径大于或等于过滤孔径,球形、椭圆形或二十面体等形状规则的噬菌体;同时,要充分考虑噬菌体的表面结构及环境抗性等情况,以模拟病毒吸附的情形。

2.2 用于消毒效果评价研究

将目标病毒与指示噬菌体置于不同环境下,或使用各种理化因子及化学消毒剂对其进行灭活研究,得到特定病毒和噬菌体对各类消毒因子的抗性,是确定噬菌体是否可以在特定条件下成为某些特定病毒(目标病毒)的指示生物的证据性研究。根据噬菌体及目标病毒对环境因子的抗性,可以有条件地将其作为指示病毒,用于消毒效果的评价。

MS2是一种常用的指示病毒噬菌体,其在各类理化条件下的抗性研究涉及了温度、臭氧、辐照、游离氯、pH、渗透压、有机污染物等对其的灭活情况[30-31],其目标病毒包括了甲肝、诺如病毒、脊髓灰质炎病毒疫苗株等[32-33]。陈昭斌[10]开展了以MS2噬菌体作为脊髓灰质炎病毒Ⅰ型P(V-Ⅰ)疫苗株指示生物用于消毒效果评价的证据研究,内容包括MS2及T4、ΦX174等对各种理化因子的抵抗力,生态因子、化学因子对P(V-Ⅰ)与MS2及F2噬菌体存活率的影响。结果证明,MS2对大多数实验因素的抗性均大于或相当于P(V-Ⅰ),可以作为一种P(V-Ⅰ)的指示病毒来使用。帖金凤[34]也研究比较了F2、T4、T7噬菌体与P(V-Ⅰ)对外环境和三氯异氰尿酸溶液中有效氯的抗性,并以T7为指标毒株,观察了含氯消毒剂浓度、作用时间、有机干扰物和温度等因素对病毒灭活效果的影响。结果显示,T7在外环境中生存能力最强,对三氯异氰尿酸溶液中有效氯的抗性与P(V-Ⅰ)的抗性相当,基本上符合消毒试验标准菌株应具备的条件。Magri等[35]将腺病毒、呼肠孤病毒以及噬菌体(MS2、ΦX174和28B)置于粪便污泥中,研究上述病毒对粪便污泥中pH和氨水的抗性,结果发现,腺病毒和呼肠孤病毒的灭活时间比噬菌体短,说明在上述环境中噬菌体对pH和氨水的抗性更强。另有多项研究表明MS2具有比包膜病毒更强的环境抗性,可以作为SARS-CoV-2、肝炎等病毒的消毒用指示病毒[36-38]

作为新的研究热点,噬菌体Φ6作为呼吸道病毒指示生物的研究报道也逐年增加,研究内容主要集中在温度和缓冲溶液对Φ6噬菌体和目标病毒的影响方面。Adcock等[39]研究了囊病毒科的Φ6、Φ8噬菌体与禽流感病毒H5N1 (H5N1 AIV)在水中的存活情况,结果发现,Φ6和Φ8噬菌体在17 ℃和28 ℃时在清水中的存活率与H5N1基本一致,但Φ6对氯离子耐受性高于H5N1,可以作为H5N1在清水中的潜在指示病毒使用。Elving等[40]比较了禽流感病毒H7N1 (H7N1 AIV)、Φ6噬菌体和MS2噬菌体在堆肥过程中对温度的敏感性。结果表明,与H7N1结构相类似的Φ6噬菌体对温度的抗性表现与H7N1相近似,但MS2的敏感性略低于H7N1,可以在相同的温度下存活更长的时间。这可能与病毒的结构有关。Sassi等[41]在厌氧消化的条件下,研究了腺病毒、MS2、Φ6在高温下的存活能力,认为Φ6的表现比MS2更适于作为埃博拉病毒的替代病毒;一项在不同绝对湿度下Φ6的存活时长的研究发现,Φ6比埃博拉病毒的存活时间长,进一步证明Φ6作为埃博拉病毒指示生物的可行性[42]

此外,Q-beta还被ISO组织采纳为光催化材料抗病毒性能检测的指示病毒使用,其被光催化材料二氧化钛在光照0.01 mW/cm2时的灭活效应与甲型流感病毒相近似[43]。本团队也就上述病毒的特性进行了验证研究,完成了相关国家标准的制定[44]。F2噬菌体、ΦX174噬菌体、T4噬菌体等也常被认为是潜在的消毒学指示噬菌体,其在各理化和环境因素中的活性情况都得到了不同程度的关注[45-46]

这种使用指示病毒进行消毒效果评价的方法,在针对新发传染病、高传染性或烈性传染性病毒的消毒效果评价时,优势尤其明显。使用该方法既能有效降低使用上述危险病毒可能造成的人员及环境危害,又可以快速、高通量地进行效果评价和消毒剂的筛选,是非常经济便捷的。但是,在选择此类指示病毒用噬菌体时,应对所选噬菌体及目标病毒的特性有充分的了解。选择合适的指示病毒既是保证评价结果科学可信的基础条件,又是难点问题,需要使用者在工作中不断地累积数据和经验。

2.3 用于病毒传播过程的研究及评价

根据病毒的传播途径不同,病毒的传播介质主要包括气溶胶、液体或液滴及物体表面等。目前的研究主要包括病毒传播过程中目标病毒与指示噬菌体的活性比较、病毒的传播规律及用于中断传播过程的消毒剂和消毒措施效果评价等方面。

关于气溶胶中病毒的活性,Turgeon等[47]研究了5种噬菌体与流感病毒H1N1和鸡新城疫病毒在3种不同品牌型号的雾化器雾化和2种采样器采样时气溶胶病毒的存活情况。结果显示,鸡新城疫病毒与MS2和ΦX174在雾化和采样中的抗性相近,H1N1与Φ6和PR722的抗性相似,在雾化过程中加入少量有机保护剂可以提高Φ6和PR722的抗性。此外,委内瑞拉马脑膜炎病毒与Φ6噬菌体在气溶胶产生、采集和循环风道试验中的稳定性相似[48]。上述研究证明,Φ6噬菌体是一种比较有潜力的含脂质囊膜的病毒的替代物。目前已有标准和研究采用了噬菌体作为指示病毒来进行相关产品去除空气中病毒效果的评估试验[2949]

此外,还可以用噬菌体作为指示病毒来研究病毒的传播规律。Liu等[50]以噬菌体ΦX174为指示病毒,研究了口腔治疗过程中气溶胶发生及传播的时空规律,为口腔科医生防护及环境消毒提供了有力的证据。对于经接触造成病毒水平传播的研究主要采用以ΦX174和MS2为代表的噬菌体作为指示生物来代替流感、乙肝等病毒。Rheinbaben等[51]在志愿者的手部和门把手上涂上ΦX174噬菌体,一段时间后在其他的家庭成员手上都分离到了活的噬菌体。在使用MS2噬菌体作为污染病毒研究其在家庭成员间或者保育中心儿童间的传染情况时,也得到了同样的结果[52]。采用清水、肥皂或定期使用醇基消毒剂(ABHS)洗手,可有效地中断通过接触污染源的病毒水平传播[53-54]。在一家长期护理机构中,以MS2为实验病毒研究病毒的传播路线和消毒介入对其传播的影响,结果发现,尽管病毒可以很容易地从接种者的手上传播到其他物体和其他人的手上,但消毒措施的介入可以非常有效地中断病毒的传播,减少病毒的数量[55]。孙廷丽等[56-57]以噬菌体为指示病毒研究并建立评价洗手产品除病毒效果的体外评价模型,并通过大量的试验数据,证明洗手确实可以有效去除人体手部的病毒。

病毒传播过程的研究,主要考察病毒在污染源上及传播途径中的存活能力,需确保研究过程的可控,不会产生因测试研究造成的病毒泄露及污染。因此,具有与目标病毒在测试环境中相似的存活能力,且安全性极高的噬菌体类指示病毒是非常理想的选择。

2.4 用于水质及环境监测等领域

由于病毒在水体中广泛存在,且会随着水体流动进行传递,产生经口污染或气溶胶,引起疾病。因此,对于水体的水质监测、水中致病性微生物致病风险预测等的监控至关重要。一般情况下,肠道病毒、噬菌体作为指示病毒已被广泛用于环境和水质监测领域中评价水和污水的处理效率、阐明病毒灭活机理以及改进病毒检测方法等的研究[58-59]

MS2、ΦX174、F-RNA噬菌体都是比较常用的指示用噬菌体,它们在水体特别是污水中广泛存在,对自然环境和水处理过程的抗性接近或超过高等生物病毒,数量上有很好的对应关系[60-61]。病毒与噬菌体在砂层下的迁移和吸附情况的研究也非常多见,不同迁移和过滤速率的噬菌体可以用来指示水体的污染及其对病毒的传播风险。如在一项冲积砂和砾石含水层介质中人类肠道病毒(诺如病毒、腺病毒、轮状病毒)及噬菌体MS2的过滤去除研究中发现,冲积砂和砾石含水层介质对MS2的过滤效率小于人类肠道病毒,表明可以使用MS2噬菌体作为指示病毒来监测人类肠道病毒在水中的散播和过滤效率[62],Li等[63]还利用噬菌体作为指示病毒来监控追踪水中的粪便污染。

此外,噬菌体还被广泛应用于评价水和污水的处理效果、消毒技术及其他科学评价。目前已有多个研究以噬菌体(如MS2、T1、T7、T7m、ΦX 174、Qβ)为挑战生物,验证了紫外线杀灭、水力空化作用、流光光晕放电技术等水消毒措施的有效性[64-66];Christoph等[67]使用MS2作为测试病毒,研究了陶瓷滤器对病毒的过滤效果的影响;Baldasso等[68]使用MS2噬菌体作为指示病毒,对美国和墨西哥2个州的天然地表水进行UVC现场消毒试验追踪,建立了生活饮用水的水质安全监控模型;Alamin等[69]则使用F-RNA作为SARS-COV-2的替代病毒,用于废水中病毒检测的质控过程,验证了低浓度病毒检测的质控方法。ISO10705-1[70]也指定采用MS2噬菌体作指示病毒用于水质评价并规定了详细的检测方法。

由于水与环境中病毒和处理措施的多样性,指示病毒的选择也需要根据其原理和需要来进行选择。以地下水中病毒的监控处理为例,如果研究病毒随水源在土层中的迁徙规律,需重点考虑病毒的大小及表面特征;如果评估某种处理措施对病毒处理的有效性,则根据其原理为过滤、吸附还是杀灭,侧重考虑其指示病毒的大小、表面形态或对消毒因子的抗逆性。

3 结语

噬菌体作为指示用病毒的应用和研究,在国内外已有部分基础。作为一种细菌病毒,噬菌体既有与高等生物病毒相似的生物学特性,又具有其在分析方面不具备的安全、快速、技术简单的优势,是一种非常有潜力和应用价值的指示生物,在技术和逻辑上都是可行的(表 3)。

表 3. 噬菌体作为指示病毒的应用要点Table 3. Key points of applications on bacteriophages as indicator virus

Applications as indicator virusLogic of the indicationKey points of applications
Filter validation studiesSize exclusion when the indicator virus is larger than the filter pore size of the tested item, the virus will be intercepted; adsorptive retention of particulates affected by surface structure of indicatorsThe virus’s size should simulate or be larger than the target virus; Regular shape such as spherical, oval, or icosahedron; Give full consideration to the surface structure of the phage and environmental resistance to simulate the virus adsorption situation
Disinfection effect validationResistance to the disinfection factors is greater than or equal to simulate the target virusA good understanding of the resistance characteristics of the indicator virus and the target virus, reasonable predictions can be made based on the available data
Virus transmission patternsThe pathway of distribution and viability of the virus in transmission are similar or consistent with the target virusA good understanding of the viability of the virus at the source of contamination and in the transmission route; Ensure that the research process is under control and does not produce virus transmission and contamination caused by the study
Environmental and water quality monitoringAccording to the monitoring purpose and treatment measures, indicators with environmental resistance, volume size, and surface structure similar to the target virus were comprehensively selectedUnderstand the purpose of the treatment or surveillance and apply it to the key points of filtration and removal, disinfection effect, and transmission pattern study based on the purpose

当然,噬菌体作为指示病毒,也具有一些限制和缺点。其中最重要的一点就是,其研究结果的直观性及与可迁移性低于直接使用目标病毒或高等生物病毒。这就要求,在选择指示病毒时,需对被研究对象及所选用的噬菌体的特性有充分的了解,以保证其科学性与代表性。这对研究者是一个挑战,需要大量的研究数据来填补现在的空白。

但截至目前,不论从深度上,还是广度上,我们对于病毒的了解还是非常有限的。因此,将噬菌体作为指示病毒的基础和应用研究都还有很大的挖掘空间。未来的工作可能会在以下几个方面展开:

(1) 开展噬菌体与特定病毒的生物学特性的证实性研究,挖掘更多更有说服力的指示噬菌体。尽管目前已经有部分学者开展了噬菌体(如MS2、Φ6等)与高等生物病毒的生物学特性特别是环境抗逆性的研究,但是研究的层次还不够。将来的研究除了加入更多的环境因子之外,还可以深入到基因水平、调控水平等层次,提供足够的证据,发掘出更多的噬菌体来丰富现有的指示病毒资源。

(2) 使用噬菌体作为指示病毒,对新发传染病的病毒株进行一系列的替代证实研究。使用噬菌体作为指示病毒,来进行消毒效果的现场和模拟现场试验、医院及疫源地的病毒传播风险模拟研究、病毒的检测质量控制等方面的研究和应用,在不了解病毒性能或者病毒具有极强的传染性的情况下,都可以有效地降低因新发病毒背景不清带来的风险。

(3) 将噬菌体作为指示病毒,应用于标准建设中。目前国内外共有约16项现行的标准采用了噬菌体作为指示病毒,主要涉及水质、防护器具、洗手和消毒产品等项目,使用的噬菌体包括ΦX174、MS2和Q-β等。随着研究的深入和指示病毒资源的丰富,更广的产品范围和更多的噬菌体将会得到普遍的应用和认可,为规范行业发展,促进产品质量提供保障。

References

[1]O'CONNELL M, SMITH K, STROUD R. The dietary impact of the COVID-19 pandemic[J]. Journal of Health Economics, 2022, 84: 102641 DOI:10.1016/j.jhealeco.2022.102641.
[2]SIDDIQI AK, KHAN U, ADIL M. Monkey pox: a public health emergency[J]. Annals of Medicine and Surgery, 2022, 82: 104622.
[3]YANG J, GONG Y, ZHANG C, SUN J, WONG G, SHI W, LIU W, GAO GF, BI Y. Co-existence and co-infection of influenza A viruses and coronaviruses: public health challenges[J]. The Innovation, 2022, 3(5): 100306 DOI:10.1016/j.xinn.2022.100306.
[4]SHAHIN K, ZHANG L, MEHRABAN MH, COLLARD JM, HEDAYATKHAH A, MANSOORIANFAR M, SOLEIMANI-DELFAN A, WANG R. Clinical and experimental bacteriophage studies: recommendations for possible approaches for standing against SARS-CoV-2[J]. Microbial Pathogenesis, 2022, 164: 105442 DOI:10.1016/j.micpath.2022.105442.
[5]SU Y, HAN J, LI J, REN Z, HUANG L, XU B, WEI Q. Resistance of poliovirus 1 and enterovirus A71 against alcohol and other disinfectants[J]. Journal of Virological Methods, 2021, 298: 114292 DOI:10.1016/j.jviromet.2021.114292.
[6]JACQUET N, WURTZER S, DARRACQ G, WYART Y, MOULIN L, MOULIN P. Effect of concentration on virus removal for ultrafiltration membrane in drinking water production[J]. Journal of Membrane Science, 2021, 634: 119417 DOI:10.1016/j.memsci.2021.119417.
[7]WU B, WANG R, FANE AG. The roles of bacteriophages in membrane-based water and wastewater treatment processes: a review[J]. Water Research, 2017, 110: 120-132 DOI:10.1016/j.watres.2016.12.004.
[8]ISO. ISO 18184-2019 Textiles-determination of antiviral activity of textile products[S]. Switerland: ISO technical committee, 2019.
[9]CHEN L, LEE WJ, MA Y, JANG SS, FONG K, WANG S. The efficacy of different sanitizers against MS2 bacteriophage introduced onto plastic or stainless steel surfaces[J]. Current Research in Food Science, 2022, 5: 175-181 DOI:10.1016/j.crfs.2022.01.004.
[10]CHEN ZB. Study on evaluation of disinfection effect by bacteriophage action indicator virus[D]. Chengdu: Doctoral Dissertation of Sichuan University, 2006 (in Chinese).
陈昭斌. 噬菌体作用指示病毒用于消毒效果评价的研究[D]. 成都: 四川大学博士学位论文, 2006.
[11]YANG W, CAI C, DAI X. Interactions between virus surrogates and sewage sludge vary by viral analyte: recovery, persistence, and sorption[J]. Water Research, 2022, 210: 117995 DOI:10.1016/j.watres.2021.117995.
[12]VIDAVER AK, KOSKI RK, van ETTEN JL. Bacteriophage phi6: a lipid-containing virus of Pseudomonas phaseolicola[J]. Journal of Virology, 1973, 11(5): 799-805 DOI:10.1128/jvi.11.5.799-805.1973.
[13]许沙沙, 田鹏, 曹开源. 甲型流感病毒的研究进展[J]. 热带医学杂志, 2015, 15(10): 1450-1452.
XU SS, TIAN P, CAO KY. Research progress of influenza A virus[J]. Journal of Tropical Medicine, 2015, 15(10): 1450-1452 (in Chinese).
[14]董晓春. 人冠状病毒HCoV-229E的研究进展[J]. 职业与健康, 2014, 30(24): 3625-3627. DOI:10.13329/j.cnki.zyyjk.2014.24.050
DONG XC. Research progress of human coronaviruses HCoV 229E[J]. Occupation and Health, 2014, 30(24): 3625-3627 (in Chinese).
[15]LIANG YC. Study on the secretion of exosomes induced by enterovirus 71 to change the permeability of brain microvascular endothelial cells[D]. Guangzhou: Master's Thesis of Jinan University, 2020 (in Chinese).
梁艺聪. 肠道病毒71型诱导外泌体分泌改变脑微血管内皮细胞通透性的研究[D]. 广州: 暨南大学硕士学位论文, 2020.
[16]QIAO MW. Study and application of pseudovirus particles of poliovirus strain[D]. Harbin: Master's Thesis of Harbin Institute of Technology, 2015 (in Chinese).
乔梦伟. 脊髓灰质炎病毒株假病毒颗粒的研究和适用[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2015.
[17]FERMIN G. Viruses[M]. Salt Lake City: Academic Press, 2018.
[18]ARANHA-CREADO H, PETERSON J, HUANG PY. Clearance of murine leukaemia virus from monoclonal antibody solution by a hydrophilic PVDF microporous membrane filter[J]. Biologicals, 1998, 26(2): 167-172 DOI:10.1006/biol.1998.0130.
[19]LYTLE CD, TONDREAU SC, TRUSCOTT W, BUDACZ AP, KUESTER RK, VENEGAS L, SCHMUKLER RE, CYR WH. Filtration sizes of human immunodeficiency virus type 1 and surrogate viruses used to test barrier materials[J]. Pathology Oncology Research, 1992, 58(2): 747-749.
[20]HYUN J, LEE SG, HWANG J. Application of corona discharge-generated air ions for filtration of aerosolized virus and inactivation of filtered virus[J]. Journal of Aerosol Science, 2017, 107: 31-40 DOI:10.1016/j.jaerosci.2017.02.004.
[21]LI HW, WU CY, TEPPER F, LEE JH, LEE CN. Removal and retention of viral aerosols by a novel alumina nanofiber filter[J]. Journal of Aerosol Science, 2009, 40(1): 65-71 DOI:10.1016/j.jaerosci.2008.09.003.
[22]ZEYTUNCU B, ÜRPER M, KOYUNCU İ, TARABARA VV. Photo-cross linked PVA/PEI electrospun nanofiber membranes: preparation and preliminary evaluation in virus clearance tests[J]. Separation and Purification Technology, 2018, 197: 432-438 DOI:10.1016/j.seppur.2018.01.002.
[23]ZHANG J, WU B, ZHANG J, ZHAI X, LIU Z, YANG Q, LIU H, HOU Z, SANO D, CHEN R. Virus removal during sewage treatment by anaerobic membrane bioreactor (AnMBR): the role of membrane fouling[J]. Water Research, 2022, 211: 118055 DOI:10.1016/j.watres.2022.118055.
[24]LUTE S, ARANHA H, TREMBLAY D, LIANG D, ACKERMANN HW, CHU B, MOINEAU S, BRORSON K. Characterization of coliphage PR772 and evaluation of its use for virus filter performance testing[J]. Applied and Environmental Microbiology, 2004, 70(8): 4864-4871 DOI:10.1128/AEM.70.8.4864-4871.2004.
[25]VOELLER B, NELSON J, DAY C. Viral leakage risk differences in latex condoms[J]. AIDS Research and Human Retroviruses, 1994, 10(6): 701-710 DOI:10.1089/aid.1994.10.701.
[26]ISO. ISO 16604-2004 Clothing for protection against contact with blood and body fluids-determination of resistance of protective clothing materials to penetration by blood-borne pathogens-test method using Phi-X 174 bacteriophage[S]. Switerland: ISO technical committee, 2004.
[27]ASTM. ASTM F1671-2013 Standard test method for resistance of materials used in protective clothing to penetration by blood-borne pathogens using Phi-X174 bacteriophage penetration as a test system: ASTM F1671/F1671M-13[S]. ASTM International, 2013.
[28]National Medical Products Administration. YY/T 1497-2016 Evaluation test method for the viral filtration efficiency (VFE) of medical protective face mask materials. Test method using Phi-X174 bacteriophage[S]. Beijing: China Quality and Standards Publishing & Media Co., Ltd, 2016 (in Chinese).
国家食品药品监督管理总局. YY/T 1497-2016医用防护口罩材料病毒过滤效率评价测试方法Phi-X174噬菌体测试方法. 北京: 中国标准出版社, 2016.
[29]Shanghai Environmental Protection Industry Association. T/SAEPI 005—2020. Measurement of virus removal activity of indoor air cleaner and similar products[S]. 2020 (in Chinese).
上海市环境保护工业行业协会. T/SAEPI 005—2020. 空气净化器及类似功能产品除病毒性能试验方法[S]. 2020.
[30]刘贺, 费春楠. 病毒灭活效果验证相关指示病毒研究进展[J]. 中国消毒学杂志, 2018, 35(2): 142-145.
LIU H, FEI CN. Research progress of virus inactivation effect verification related indicator virus[J]. Chinese Journal of Disinfection, 2018, 35(2): 142-145 (in Chinese).
[31]OISHI W, SANO D, DECREY L, KADOYA S, KOHN T, FUNAMIZU N. Identification of the inactivating factors and mechanisms exerted on MS2 coliphage in concentrated synthetic urine[J]. The Science of the Total Environment, 2017, 598: 213-219 DOI:10.1016/j.scitotenv.2017.04.088.
[32]BOZKURT H, D'SOUZA DH, DAVIDSON PM. Thermal inactivation of foodborne enteric viruses and their viral surrogates in foods[J]. Journal of Food Protection, 2015, 78(8): 1597-1617 DOI:10.4315/0362-028X.JFP-14-487.
[33]DANIELLE L, MARIE-JOSÉE G, JULIE B. Effectiveness of water and sanitizer washing solutions for removing enteric viruses from blueberries[J]. Food Control, 2021, 126: 108043 DOI:10.1016/j.foodcont.2021.108043.
[34]TIE JF. Primary study on bacteriophage as indicator in disinfectant virucidal test[D]. Beijing: Master's Thesis of Institute of Disease Prevention and Control, Academy of Military Medical Sciences, 2006 (in Chinese).
帖金凤. 噬菌体作为病毒灭活指标毒株的探索研究[D]. 北京: 中国人民解放军军事医学科学院硕士学位论文, 2006.
[35]MAGRI ME, FIDJELAND J, JÖNSSON H, ALBIHN A, VINNERÅS B. Inactivation of adenovirus, reovirus and bacteriophages in fecal sludge by pH and ammonia[J]. Science of the Total Environment, 2015, 520: 213-221 DOI:10.1016/j.scitotenv.2015.03.035.
[36]AHMED W, BERTSCH PM, BIBBY K, HARAMOTO E, HEWITT J, HUYGENS F, GYAWALI P, KORAJKIC A, RIDDELL S, SHERCHAN SP, SIMPSON SL, SIRIKANCHANA K, SYMONDS EM, VERHAGEN R, VASAN SS, KITAJIMA M, BIVINS A. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology[J]. Environmental Research, 2020, 191: 110092 DOI:10.1016/j.envres.2020.110092.
[37]ZULAUF KE, GREEN AB, NGUYEN BA AN, JAGDISH T, REIF D, SEELEY R, DALE A, KIRBY JE. Microwave-generated steam decontamination of N95 respirators utilizing universally accessible materials[J]. mBio, 2020, 11: e00997-20.
[38]DEV KUMAR G, MISHRA A, DUNN L, TOWNSEND A, OGUADINMA IC, BRIGHT KR, GERBA CP. Biocides and novel antimicrobial agents for the mitigation of coronaviruses[J]. Frontiers in microbiology, 2020, 11: 1351 DOI:10.3389/fmicb.2020.01351.
[39]ADCOCK NJ, RICE EW, SIVAGANESAN M, BROWN JD, STALLKNECHT DE, SWAYNE DE. The use of bacteriophages of the family Cystoviridae as surrogates for H5N1 highly pathogenic avian influenza viruses in persistence and inactivation studies[J]. Journal of Environmental Science and Health, Part A, 2009, 44(13): 1362-1366 DOI:10.1080/10934520903217054.
[40]ELVING J, EMMOTH E, ALBIHN A, VINNERÅS B, OTTOSON J. Composting for avian influenza virus elimination[J]. Applied and Environmental Microbiology, 2012, 78(9): 3280-3285 DOI:10.1128/AEM.07947-11.
[41]SASSI HP, IKNER LA, ABD-ELMAKSOUD S, GERBA CP, PEPPER IL. Comparative survival of viruses during thermophilic and mesophilic anaerobic digestion[J]. The Science of the Total Environment, 2018, 615: 15-19 DOI:10.1016/j.scitotenv.2017.09.205.
[42]WHITWORTH C, MU Y, HOUSTON H, MARTINEZ-SMITH M, NOBLE-WANG J, COULLIETTE-SALMOND A, ROSE L. Persistence of bacteriophage phi 6 on porous and nonporous surfaces and the potential for its use as an Ebola virus or coronavirus surrogate[J]. Applied and Environmental Microbiology, 2020, 86(17): e01482-e01420.
[43]ISO. ISO 18061-2014 Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-determination of antiviral activity of semiconducting photocatalytic materials-test method using bacteriophage Q-beta[S]. Switerland: ISO technical committee, 2014.
[44]National Technical Committee 194 on Industrial Ceramics of Standardization Administration of China. 20204810-T-609 Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—determination of antiviral activity of semiconducting photocatalytic materials—test method using bacteriophage Q-beta[S]. 2022. https://std./gb/search/gbDetailed?id=E116673EC4CDA3B7E05397BE0A0AC6BF (in Chinese).
全国工业陶瓷标准化技术委员会. 20204810-T-609光催化材料抗病毒活性的测定Q-β噬菌体试验方法[S]. 2022. https://std./gb/search/gbDetailed?id=E116673EC4CDA3B7E05397BE0A0AC6BF.
[45]SHIRASAKI N, MATSUSHITA T, MATSUI Y, MARUBAYASHI T, MURAI K. Investigation of enteric adenovirus and poliovirus removal by coagulation processes and suitability of bacteriophages MS2 and φX174 as surrogates for those viruses[J]. The Science of the Total Environment, 2016, 563/564: 29-39 DOI:10.1016/j.scitotenv.2016.04.090.
[46]MAMANE H, SHEMER H, LINDEN KG. Inactivation of EcoliBsubtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation[J]. Journal of Hazardous Materials, 2007, 146(3): 479-486 DOI:10.1016/j.jhazmat.2007.04.050.
[47]TURGEON N, TOULOUSE MJ, MARTEL B, MOINEAU S, DUCHAINE C. Comparison of five bacteriophages as models for viral aerosol studies[J]. Applied and Environmental Microbiology, 2014, 80(14): 4242-4250 DOI:10.1128/AEM.00767-14.
[48]PHILLPOTTS RJ, THOMAS RJ, BEEDHAM RJ, PLATT SD, VALE CA. The Cystovirus Phi6 as a simulant for Venezuelan equine encephalitis virus[J]. Aerobiologia, 2010, 26: 301-309 DOI:10.1007/s10453-010-9166-y.
[49]ZACHARIAS N, HAAG A, BRANG-LAMPRECHT R, GEBEL J, ESSERT SM, KISTEMANN T, EXNER M, MUTTERS NT, ENGELHART S. Air filtration as a tool for the reduction of viral aerosols[J]. The Science of the Total Environment, 2021, 772: 144956 DOI:10.1016/j.scitotenv.2021.144956.
[50]LIU Z, ZHANG P, LI Y, YANG W, GUO J, LIU J, YAO G. Assessment of spatial concentration variation and deposition of bioaerosol in a dental clinic during oral cleaning[J]. Building and Environment, 2021, 202: 108024 DOI:10.1016/j.buildenv.2021.108024.
[51]RHEINBABEN FV, SCHÜNEMANN S, GROSS T, GROß T, WOLFF MH. Transmission of viruses via contact in a household setting: experiments using bacteriophage ΦX174 as a model virus[J]. Journal of Hospital Infection, 2000, 46(1): 61-66 DOI:10.1053/jhin.2000.0794.
[52]TAMIMI AH, CARLINO S, EDMONDS S, GERBA CP. Impact of an alcohol-based hand sanitizer intervention on the spread of viruses in homes[J]. Food and Environmental Virology, 2014, 6(2): 140-144 DOI:10.1007/s12560-014-9141-9.
[53]OELBERG DG, JOYNER SE, JIANG X, LABORDE D, ISLAM MP, PICKERING LK. Detection of pathogen transmission in neonatal nurseries using DNA markers as surrogate indicators[J]. Pediatrics, 2000, 105(2): 311-315 DOI:10.1542/peds.105.2.311.
[54]JIANG X, DAI XM, GOLDBLATT S, BUESCHER C, CUSACK TM, MATSON DO, PICKERING LK. Pathogen transmission in child care settings studied by using a cauliflower virus DNA as a surrogate marker[J]. The Journal of Infectious Diseases, 1998, 177(4): 881-888 DOI:10.1086/515253.
[55]SASSI HP, SIFUENTES LY, KOENIG DW, NICHOLS E, CLARK-GREUEL J, WONG LF, McGRATH K, GERBA CP, REYNOLDS KA. Control of the spread of viruses in a long-term care facility using hygiene protocols[J]. American Journal of Infection Control, 2015, 43(7): 702-706 DOI:10.1016/j.ajic.2015.03.012.
[56]孙廷丽, 周少璐, 杨秀茳, 文霞, 黎玉莲, 谢小保. 洗手产品除病毒效果离体实验方法研究[J]. 中国公共卫生, 2019, 35(1): 42-47.
SUN TL, ZHOU SL, YANG XJ, WEN X, LI YL, XIE XB. In vitro method for evaluation on virus-eliminating effectiveness of hand wash agents: an experimental study[J]. Chinese Journal of Public Health, 2019, 35(1): 42-47 (in Chinese).
[57]孙廷丽, 谢小保, 周少璐, 黎玉莲, 陈嘉乐, 徐碧霞, 王永祥. 洗手产品在离体洗手模型下的除病毒效果研究[J]. 日用化学品科学, 2022(11): 24-27.
SUN TL, XIE XB, ZHOU SL, LI YL, CHEN JL, XU BX, WANG YX. Research on the virus removal efficacy of hand-washing agents in an in-vitro model[J]. Detergent & Cosmetics, 2022(11): 24-27 (in Chinese).
[58]ROGOVSKI P, RAFAEL CADAMURO D, SOUZA DSM, SOUZA EB, SILVA R, SILVA MA, VIANCELLI A, MICHELON W, CAMARGO AF, BONATTO C, STENFANSKI FS, SCAPINI T, RODRÍGUEZ-LÁZARO D, TREICHEL H, FONGARO G. Chapter 3-perspectives of biological bacteriophage-based tools for wastewater systems monitoring and sanitary control[J]. The Future of Effluent Treatment Plants, 2021: 33-50.
[59]FITZMORRIS-BRISOLARA K, MAAL-BARED R, WORLEY-MORSE T, DANLEY-THOMSON A, SOBSEY M. Monitoring coliphages to reduce waterborne infectious disease transmission in the One Water framework[J]. International Journal of Hygiene and Environmental Health, 2022, 240: 113921 DOI:10.1016/j.ijheh.2022.113921.
[60]李梅, 胡洪营. 噬菌体作为水中病毒指示物的研究进展[J]. 中国给水排水, 2005(2): 23-26. DOI:10.3321/j.issn:1000-4602.2005.02.006
LI M, HU HY. Research progress in the use of bacteriophages as viral indicators in water[J]. China Water & Wastewater, 2005(2): 23-26 (in Chinese).
[61]HAVELAAR AH, FURUSE K, HOGEBOOM WM. Bacteriophages and indicator bacteria in human and animal faeces[J]. The Korean Journal of Pain, 1986, 60(3): 255-262.
[62]PANG L, FARKAS K, LIN S, HEWITT J, PREMARATNE A, CLOSE M. Attenuation and transport of human enteric viruses and bacteriophage MS2 in alluvial sand and gravel aquifer media-laboratory studies[J]. Water Research, 2021, 196: 117051 DOI:10.1016/j.watres.2021.117051.
[63]LI X, AHMED W, WU Z, XIA Y. Developing a novel Bifidobacterium phage quantitative polymerase chain reaction-based assay for tracking untreated wastewater[J]. The Science of the Total Environment, 2022, 838(pt 2): 155815.
[64]BECK SE, WRIGHT HB, HARGY TM, LARASON TC, LINDEN KG. Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems[J]. Water Research, 2015, 70: 27-37 DOI:10.1016/j.watres.2014.11.028.
[65]KOSEL J, GUTIÉRREZ-AGUIRRE I, RAČKI N, DREO T, RAVNIKAR M, DULAR M. Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation[J]. Water Research, 2017, 124: 465-471 DOI:10.1016/j.watres.2017.07.077.
[66]KIM DK, KIM SJ, KANG DH. Inactivation modeling of human enteric virus surrogates, MS2, Qβ, and ΦX174, in water using UVC-LEDs, a novel disinfecting system[J]. Food Research International, 2017, 91: 115-123 DOI:10.1016/j.foodres.2016.11.042.
[67]CHRISTOPH S, MAGDALENA AK, BRIGITTE H, JÖRG ED. Effects of varying flux and transmembrane pressure conditions during ceramic ultrafiltration on the infectivity and retention of MS2 bacteriophages[J]. Separation and Purification Technology, 2022, 299: 1383-5866.
[68]BALDASSO V, LUBARSKY H, PICHEL N, TUROLLA A, ANTONELLI M, HINCAPIE M, BOTERO L, REYGADAS F, GALDOS-BALZATEGUI A, BYRNE JA, FERNANDEZ-IBAÑEZ P. UVC inactivation of MS2-phage in drinking water-modelling and field testing[J]. Water Research, 2021, 203: 117496 DOI:10.1016/j.watres.2021.117496.
[69]ALAMIN M, TSUJI S, HATA A, HARA-YAMAMURA H, HONDA R. Selection of surrogate viruses for process control in detection of SARS-CoV-2 in wastewater[J]. The Science of the Total Environment, 2022, 823: 153737 DOI:10.1016/j.scitotenv.2022.153737.
[70]ISO. ISO 10705-1-1995. Water Quality-Detection and Enumeration of Bacteriophages. Part 1[S]. Switerland: ISO technical committee, 1995.

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多