分享

相互独立事件同时发生的概率

 小力·大力 2011-01-08

同步教育信息

. 本周教学内容:

互斥事件有一个发生的概率;相互独立事件同时发生的概率

 

. 本周教学重、难点:

1. 重点:

1)了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。

2)相互独立事件,独立重复试验的概率,相互独立事件的概率乘法公式。

2. 难点:

1)把复杂事件分拆成彼此互斥的简单事件,求简单事件的基本事件数。

2)判断各事件之间是否独立。

 

【典型例题】

[1] 20件产品中,有15件一级品;5件二级品,从中任取3件,其中至少有1件为二级品的概率是多少?

解法一:基本事件总数为,从20件产品中任取3件,其中恰有1件二级品的事件为,恰有2件二级品的事件为,恰有3件二级品的事件为,则

   =

解法二:

 

[2] 10个数字012,……,9中取4个不重复的数字排四位数,能排成一个4位偶数的概率是多少?

解:试验结果的总数为种情况,设所求事件为A,因为要求的是偶数,所以个位数字只能取02468中的任何一个,它需要分两种情况:(1)个位数是0时,其余三位数可从12,……,9中选出,共有种;(2)当个位数取2468中任何一个时,还需从其余的9个数字中任取3个,共有种。由于0不能放在首位(而0在首位有种),故以2468为个位的四位偶数共有,于是能排成一个4位偶数的概率为

 

[3] 在一只袋子中装有7个红玻璃球和3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个。试求:

1)取得两个红球的概率;

2)取得两个绿球的概率;

3)取得两个同颜色的球的概率;

4)至少取得一个红球的概率。

解:10个球中先后取2个,共有种不同取法。

1)由于取得两个红球的情况有种,所以取得两个红球的概率为

2)取得两个绿球的概率为

3)由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两同色球的概率为

4)由于事件C“至少取得一个红球”与事件B“取得两个绿球”是对立事件,因而至少取得一个红球的概率为

 

[4] 甲、乙两个独立地破译一个密码,他们能译出密码的概率分别为,求:

1)两个人都译出密码的概率;

2)两个人都译不出密码的概率;

3)恰有一个译出密码的概率;

4)至多一个人译出密码的概率;

5)至少一个人译出密码的概率。

解:记“甲独立地译出密码”为事件A,“乙独立地译出密码”为事件BAB为相互独立事件,且

1)两个人都译出密码的概率为

2)两个人都译不出密码的概率为

3)恰有一个人译出密码可以分为两类:甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有一个人译出密码的概率为

           

4)“至多1个人译出密码”的对立事件为“有两个人译出密码”,所以至多1个人译出密码的概率为

5)“至少有1个人译出密码”的对立事件为“两个未译出密码”,所以至少有1个人译出密码的概率为

 

[5] 某战士射击中靶的概率为0.99,若连续射击两次,求:

1)两次都中靶的概率;

2)至少有一次中靶的概率。

解:记事件为“第一次射击中靶”,事件为“第二次射击中靶”。

1)两次都中靶的概率为

2方法一:(直接法)

事件“至少有一次中靶”为,其概率为

     

     

    

方法二:(间接法)

事件“至少有一次中靶”的对立事件为“两次都未中靶”,,其概率为

至少有一次中靶的概率为

 

[6] 加工某一零件共需经过三道工序,设第一、二、三道工序的次品率分别是2%3%5%,假定各道工序是互不影响的,问加工出来的零件的次品率是什么?

解法一:分别是第一、二、三道工序得到次品的事件,由题设可知,这些事件是相互独立的,因为这些事件中任意一个、两个或三个事件发生时,加工出来的零件即为次品。

设加工出来的零件为次品的事件为A,则

         

       

即加工出来的零件为次品的概率为0.09693

解法二:分别为第一、二、三道工序得到次品的事件,A为加工出来的零件为次品的事件,则

即加工出来的零件为次品的概率为0.09693

 

[7] 在某次1500体能测试中,甲、乙、丙三人各自通过测试的概率分别为,求:

13人都通过体能测试的概率;

2)只有2人通过体能测试的概率;

3)只有1人通过体能测试的概率。

解:A表示事件“甲通过体能测试”,B表示事件“乙通过体能测试”,C表示事件“丙通过体能测试”。由题意有

1)设M1表示“甲、乙、丙3人都通过体能测试”,即M1=ABC。由事件ABC相互独立,可得

2)设M2表示事件“甲、乙、丙3人只有2人通过体能测试”,则

由于事件ABACBC均相互独立,并且事件两两互斥,因此所求的概率为

3)设表示事件“甲、乙、丙3人只有1人通过体能测试”,则

    由于ABC相互独立,并且事件两两互斥,所以所求的概率为

 

[8] 如下图,设每个电子元件能正常工作的概率均为,问甲、乙哪一种正常工作的概率大?

解:记元件正常工作为事件

甲电路中:串联,路中能工作的概率为,不能正常工作的概率为

同理,路中不能工作的概率为

路与路为并联电路,不能工作的概率为路,路同时不能工作,故甲线路中不能工作的概率为,所以甲线路正常工作的概率为

对于乙电路:为并联电路,路不能工作的概率为,能正常工作的概率为

同理,路能正常工作的概率为

路与路为串联电路,能正常工作的概率为

图乙正常工作的概率大。

[9] 在一次考试中出了六道是非题,正确的记“√”,不正确的记“×”,若某考生完全记上六个符号,试求:

1)全部正确的概率;

2)正确解答不少于4道的概率;

3)至少正确解答一半的概率。

解:

1

2

3

                                     

 

【模拟试题】

. 选择:

1. 设有10个零件,其中6个是一等品,4个是二等品,从中任取3个,至少有一个是一等品的概率为(   

A.                   B.

C.                                                    D.

2. 奔腾市派出甲、乙两支球队参加全省足球冠军赛,甲、乙两队夺取冠军的概率分别是,则该市足球队夺得全省足球冠军的概率为(   

    A.     B.     C.      D.

3. 12,……9中任取两数,其中① 恰有一个是偶数和恰有一个是奇数;② 至少有一个是奇数和两个都是奇数;③ 至少有一个是奇数和两个是偶数;④ 至少有一个是奇数和至少有一个偶数。

在上述事件中,是对立事件的是(   

A.     B. ②④   C.     D. ①③

4. 若事件AB相互独立,则下列不相互独立的事件为(   

    A. A    B.     C.     D. BA

5. 甲、乙两人独立地解同一问题,甲解决这个问题的概率是,乙解决这个问题的概率是,那么恰好有1人解决这个问题的概率是(   

A.                                 B.

C.                               D.

6. AB互斥,且,有下面四个命题,其中正确命题的个数为(   

AB相互独立                    AB对立

AB不一定相互独立        

A. 0    B. 1    C. 2    D. 3

7. 某机械零件加工由2道工序组成,第1道工序的废品率为,第2道工序的废品率为,假定这2道工序出废品是彼此无关的,那么产品的合格率是(   

A.                              B.

C.                                          D.

8. 在一次考试中,某班语文、数学、外语平均分在80分以上的概率分别为,则该班的三科平均分在80分以上的概率是(   

A.     B.     C.     D.

 

. 解答:

1. 在放有5个红球,4个黑球,3个白球的袋中,任意取出3个球,分别求出3个全是同色球的概率及三球颜色互不相同的概率。

2. 一个工人看管三台车床,在1小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7,求在1小时内至少有一台车床需要工人照管着的概率。

3. 一电路由电池A与两个并联的电池BC串联而成,如图,设电池ABC损坏的概率分别为0.30.20.2,求电路发生间断的概率。

4. 甲厂生产的脱粒机,每台连续使用不少于10年的概率是,乙厂生产的柴油机,每台连续使用不少于10年的概率是。将一台脱粒机与一台柴油机配套使用,求下列各事件的概率。

1A(脱粒机与柴油机的连续使用期都不少于10年);

2B(只有脱粒机的连续使用期不少于10年);

3C(至少有一台机器的连续使用期不少于10年)。

 

 

 

 

 

 


【试题答案】

.

1. D   2. D   3. C   4. C   5. B   6. B   7. A   8. D

 

.

1. 解:从12个球中任取3个,共有种不同取法,故全是同色球的概率为

三球的颜色互不相同的概率为

2. 解:设第一、二、三台车床在1小时内不需要工人照管的事件分别为ABC;在1小时内至少有一台车床需要工人照管的事件为D,则

又由于三台车床在1小时内不需要工人照管的事件是相互独立的,所以

3. 解:设电池ABC损坏的事件分别为,电路发生间断的事件为D,则

   

    

         

         

          

即电池发生间断的概率为0.328

4. 解:记事件“脱粒机连续使用期不少于10年”为,事件“柴油机连续使用期不少于10年”为

1)脱粒机与柴油机的连续使用期都不少于10年的概率为

2)只有脱粒机的使用期不少于10年的概率为

3)至少有一台机器的连续使用期不少于10年的概率为

 

【励志故事】

半杯理论

亨利福特被美国人称为“汽车之父”。1913年他率先采用流水线组装汽车,第一次实现10秒钟组装一部汽车的神话。几年后民用汽车的价格降低了一半,小轿车不再是富豪的专属。福特的思想对全世界的制造业也产生了极大的影响。今天,大到一架飞机,小到一包糖果,都可以在流水线上生产。福特汽车公司初具规模后,有一次,福特在高层会议中建议改进现有的装配线,从而提高生产效率。这个提议遭到很多人反对:有人觉得改进装配线,既要投资购买机器,又得重新培训工人,风险太大了;另一部分人则认为公司的生产能力已经够强,效益也很好,没必要花力气去提高效率。

听完大家的意见,福特举起桌上的玻璃杯问:“你们看到了什么?”有人担忧地说:“半杯水被喝了,杯子空了一半。”“别担心,”有人乐观地说,“杯子里还有一半水,渴了还有半杯水可喝。”“和你们不同,我看到杯子容积是水2倍。”福特说,“这里的水用个一半大小的杯子就能盛下。用一只大杯子做一只小杯子能做到的事,是对资源的浪费,是低效率。现在生产线上的员工们就像这个大杯子,有一半的潜力没发挥出来。我要做的是换个小杯子,然后我们就可以用大杯子来盛更多、更好的东西了!”

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 全屏 打印 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多