分享

习训练题数学(函数2

 昵称3826483 2013-12-08
习训练题数学(函数2)
命题人:江西师大附中 朱涤非

   一、选择题(本题共12小题,每小题5分,共60分)

 

  1已知函数,则的值是                        

 

   A.9                B.               C.9                D.

 

  2.函数y=log(2x2-3x+1)的递减区间为                                      

 

  A.1+        B.(-       C.+       D.(-

 

  3下列函数式中,满足f(x+1)=f(x)的是                                   (    )

 

  A. (x+1)           B.x+            C.2x                                D.2-x

 

  4.若         

 

  A关于直线y =x对称     B.关于x轴对称  C.关于y轴对称   D.关于原点对称

 

  5.若logm9<logn9<0,那么m,n满足的条件是(  

 

  A.m>n>1           B.0<n<m<1         C.n>m>1             D.0<m<n<1

 

  6下列函数中,同时满足:有反函数,是奇函数,定义域和值域相同的函数是    

 

  A.y=      B.y=lg          C.y=-x3                   D.y=

 

  7R上的任意函数,则下列叙述正确的是                           

 

  A.是奇函数           B.是奇函数

 

  C.是偶函数         D.是偶函数

 

  8设函数的反函数为,且的图像过点,则的图像必过              

 

   A              B               C                D

 

  9已知函数的图象与函数的图象关于直线对称,则         

 

A              B

 

C                   D

 

  10函数上的最大值和最小值之和为a,则a的值为     

 

       A                     B                       C2                       D4

 

  11.已知y=f(x)是奇函数,且满足,当,1)时,,则y=f(x)(1,2)内是

 

A.单调减函数,且f(x)<0                       B.单调减函数,且f(x)>0

 

C.单调增函数,且f(x)>0                       D.单调增函数,且f(x)<0

 

  12关于的方程,给出下列四个命题:

 

①存在实数,使得方程恰有2个不同实根;②存在实数,使得方程恰有4个不同实根;

 

③存在实数,使得方程恰有5个不同实根;④存在实数,使得方程恰有8个不同实根;

 

其中命题的个数是                                                   

 

  A0                     B1                   C2                D3

 

  二、填空题(本题共4题,每小题4分,共16分)

 

  13使函数具有反函数的一个条件是_____________________________(只填上一个条件即可,不必考虑所有情形)。

 

  14,记maxa,b=函数fx)=max|x+1|,|x-2|(xR)的最小值是  .

 

  15已知函数的值域是[14 ],则的值是             

 

  16关于函数,有下列命题:

 

①其图象关于轴对称;

 

②当时,是增函数;当时,是减函数;

 

的最小值是

 

在区间(-10)、(2,+∞)上是增函数;

 

无最大值,也无最小值.

 

其中所有正确结论的序号是                           

 

  三、解答题(本题共6小题,共74分)

 

  17.(本小题满分12分)是否存在实数a,使函数fx)=为奇函数,同时使函数gx)=为偶函数,证明你的结论。

 

  18.(本小题满分12分)已知函数,求函数图象上的点到直线距离的最小值,并求出相应的点的坐标.

 

  19.(本小题满分12分)已知的反函数为.

 

  (1),求的取值范围D

 

  (2)设函数,当时,求函数的值域.

 

  20.(本小题满分12分)设函数(a为实数).

 

   1)若a<0,用函数单调性定义证明:上是增函数;

 

   2)若a=0,的图象与的图象关于直线y=x对称,求函数的解析式.

 

  21.(本小题满分12分)已知y=f(x)是偶函数,当x>0时,,且当时,恒成立,

 

  (理科生做)求的最小值.

 

  (文科生做)若a9,求的最小值.

 

  22.(本小题满分14分)已知集合是满足下列性质的函数的全体:对于定义域B中的任何两个自变量,都有。(1)当B=R时,是否属于?为什么?(2)当B=时,是否属于,若属于请给予证明;若不属于说明理由,并说明是否存在一个使属于

 

南昌市高中新课程复习训练题数学(函数(二))参考答案

 

  一、选择题

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

D

C

B

C

D

C

D

A

D

A

 

  二、填空题

 

  (13). x2  (14). (15).48(16) ①、③、④.

 

  三、解答题

 

  17fx)为奇函数,所以f0)=0,得

 

        gx)为偶函数,则hx)=为奇函数,

 

        h(x)+hx)=0

 

 

 

  ∴存在符合题设条件的a

 

  18. 解:设图象上的一点坐标为,则

 

      

 

     ,∴,即时,,此时,相应的点的坐标是

 

 

 

  19(1),∴ (x-1)

 

   由gx  ,解得0x1 D=[01

 

  (2)Hx)=gx)-

 

   ∵0x132

 

   ∴0Hx)≤  Hx)的值域为[0

 

  20.解 (1)设任意实数x1<x2,f(x1)f(x2)=

 

  ==

 

        .

 

        ,f(x1)f(x2)<0,所以f(x)是增函数.   

 

   (2)a=0,y=f(x)=2x1,2x=y+1, x=log2(y+1),   y=g(x)= log2(x+1)           

 

  21.解解:f(x)是偶函数,且x>0

 

x<0时,

 

f(x)单调递减,在单调递增

 

,当且仅当时取等号.

 

时,时,

 

 

f(x)上最大值为,最小值为

 

 

 

,则

 

              * 

 

             (a=3时取最小值)

 

  (文科生做)参考上面解答可知:若

 

       (a=9时取最小值)

 

 

 

   22.解:(1)设,则

 

     

 

  (2)当B=时,不属于

 

       ,此时

 

       不属于

 

       但存在一个集合,使属于

 

       ,则

 

       ,则只需,故可取

 

  此时属于

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多