分享

第十一章 细胞质遗传 习题参考答案

 梦半醒 2014-03-14

第十一章 细胞质遗传

1、什么叫细胞质遗传?它有哪些特点?试举例说明之。

   答:细胞质遗传指由细胞质内的遗传物质即细胞质基因所决定的遗传现象和规律,又称非染色体遗传、非孟德尔遗传、染色体外遗传、核外遗传、母体遗传。

   细胞质遗传的特点:⑴. 遗传方式是非孟德尔式的;杂交后一般不表现一定比例的分离。⑵. 正交和反交的遗传表现不同;F1通常只表现母体的性状,故又称母性遗传。⑶. 通过连续回交能将母本的核基因几乎全部置换掉,但母本的细胞质基因及其所控制的性状仍不消失。⑷. 由附加体或共生体决定的性状,其表现往往类似病毒的转导或感染。

   举例:罗兹(Rhoades M. M.)报道玉米的第7染色体上有一个控制白色条纹的基因(ij),纯合的ijij植株叶片表现为白色和绿色相间的条纹。以这种条纹株与正常绿色进行正反杂交,并将F1自交其结果如下:当以绿色株为母本时,F1全部表现正常绿色与非绿色为一对基因的差别,纯合隐性(ijij)个体表现白化或条纹,但以条纹株为母本时,F1却出现正常绿色、条纹和白化三类植株,并且没有一定的比例,如果将F1的条纹株与正常绿色株回交,后代仍然出现比例不定的三类植株,继续用正常绿色株做父本与条纹株回交,直至ij基因被全部取代,仍然没有发现父本对这个性状的影响,可见是叶绿体变异之后的细胞质遗传方式。

2、何谓母性影响?试举例说明它与母性遗传的区别。

   答:由于母本基因型的影响,使子代表现母本性状的现象叫做母性影响,又叫前定作用。

   母性影响所表现的遗传现象与母性遗传十分相似,但并不是由于细胞质基因组所决定的,而是由于核基因的产物在卵细胞中积累所决定的,故不属于母性遗传的范畴。

   举例:如椎实螺外壳的旋转方向有左旋和右旋,这对相对性状是母性影响。把这两种椎实螺进行正反交,F1外壳的旋转方向都与各自的母体相似,成为右旋或为左旋,但其F2却都有全部为右旋,到F3世代才出现右旋和左旋的分离。这是由一对基因差别决定的,右旋(S+)对左旋(S)为显性,某个体的表现型并不由本身的基因型直接决定,而是由母体卵细胞的状态所决定,母本卵细胞的状态又由母本的基因型所决定。F1的基因型(S+S)决定了F2均为右旋,而F2的三种基因型决定了F3的二种类型的分离,其中S+S+和S+S的后代为右旋,SS后代为左旋。

3、如果正反交试验获得的F1表现不同,这可能是由于 ⑴. 性连锁;⑵. 细胞质遗传;⑶. 母性影响。你如何用试验方法确定它属于哪一种情况?

   答:正反杂交获得的F1分别进行自交或近亲交配,分析F1和F2性状分离与性别的关系,如群体中性状分离符合分离规律,但雌雄群体间性状分离比例不同者为性连锁;若正交F1表现与母本相同,反交不同,正交F1与其它任何亲本回交仍表现为母本性状者,并通过连续回交将母本的核基因置换掉,但该性状仍保留在母本中,则为细胞质遗传。若F1表现与母本相似,而自交后F2表现相同,继续自交其F3表现分离,且符合分离规律,则为母性影响。

4、细胞质遗传的物质基础是什么?

   答:所有细胞器和细胞质颗粒中的遗传物质均为细胞质遗传的物质基础。细胞器基因组包括:线粒体基因组、叶绿体基因组、动粒基因组、中心粒基因组、膜体系基因组等;非细胞器基因组包括细胞共生体基因组、细胞质粒基因组等。

5、细胞质基因与核基因所何异同?二者在遗传上的相互关系如何?

   答:共同点:虽然细胞质基因在分子大小和组成上与核基因有某些区别,但作为一种遗传物质,在结构上和功能上与核基因有许多相同点:⑴. 均按半保留复制;⑵. 表达方式一样:DNA-mRAN核糖体-蛋白质;⑶. 均能发生突变,且能稳定遗传,其诱变因素亦相同。

   不同点:细胞质基因突变频率大,具有较强的定向突变性;正反交不一样,基因通过雌配子传递;基因定位困难;载体分离无规律,细胞间分布不均匀;某些基因有感染性。而核基因突变频率较小,难于定向突变性;正反交一样,基因通过雌雄配子传递;基因可以通过杂交方式进行定位;载体分离有规律、细胞间分布均匀;基因无感染性。

   遗传学中通常把染色体基因组控制的遗传现象和遗传规律称为核遗传,把细胞质基因所决定的遗传现象和遗传规律称为细胞质遗传,两者在遗传上相互协调和制约,反映了核与质两个遗传体系相互依存和联系的统一关系。一般情况下,核基因在遗传上处于主导的地位,但在某些情况下表现出细胞质基因的自主遗传作用。

6、试比较线粒体DNA、叶绿体DNA和核DNA的异同?

   答:与核DNA相比,线粒体DNA和叶绿体DNA具有某些特点,其中:

   线粒体DNA的特点:⑴. 线粒体DNA是裸露的双链分子,一般为闭合环状结构,但也有线性的;⑵. 线粒体DNA分子量为60×106,长度为10~30mm;⑶. 线粒体DNA与原核生物的DNA一样,没有重复序列;⑷. 线粒体DNA浮力密度比较低;⑸. 线粒体DNA碱基成分中G和C有含量比A和T少;⑹. 线粒体DNA两条单链的密度不同, 一条称重链(H链),另一条称轻链(L链);⑺. 线粒体DNA单个拷贝非常小,在细胞总DNA中占的比例非常小。

   叶绿体DNA的特点:⑴. 叶绿体DNA也是双链分子,呈裸露的闭合环状结构;⑵.叶绿体DNA约为150kb;⑶. 叶绿体DNA一般是多拷贝的;⑷. 叶绿体DNA浮力密度因物种而异,但与核DNA有不同程度的差异;⑸. 叶绿体DNA碱基成分因物种不同而不同,高等植物叶绿体DNA与核DNA相同,但藻类植物中的CG含量较核DNA低;⑹. 与核DNA相比,叶绿体DNA缺少5-甲基胞嘧啶。

   相同之处:三者都是遗传物质(DNA),能稳定遗传给子代,且以半保留方式复制,表达方式一样,也能发生突变,诱变因素相同。

7、植物雄性不育主要有几种类型?其遗传基础如何?

   答:植物雄性不育主要有核不育性、质核不育性、质不育性三种类型:

   ⑴.核不育型是一种由核内染色体上基因所决定的雄性不育类型,一般受简单的1-2对隐性基因所控制,纯合体表现雄性不育。也发现由显性雄性不育基因所控制的显性核不育,它只能恢复不育性,但不能保持不育性。

   ⑵.质核不育型是由细胞质基因和核基因互作控制的不育类型,由不育的细胞质基因和相对应的核基因所决定的。当胞质不育基因S存在时,核内必须有相对应的一对(或一对以上)隐性基因rr存在时,个体才能表现不育,只有细胞质或细胞核存在可育基因时能够表现为可育。根据不育性的败育发生的过程可分为:孢子体不育,指花粉的育性受孢子体(植株)基因型所控制,与花粉本身所含基因无关;配子体不育,指花粉育性直接受雄配子体(花粉)本身的基因所决定。不同类型需特定的恢复基因。

   ⑶.质不育型是由细胞质基因所控制的不育类型,只能保持不育性,但不能恢复育性。如IRRI运用远缘杂交培育的雄性不育系IR66707A (Oryza perennis细胞质,1995) 和IR69700A (Oryza glumaepatula细胞质,1996)均具有异种细胞质源,其细胞质完全不同于目前所有的水稻雄性不育系。 这两个不育系属于细胞质型不育系,故其不育性都只能被保持而不能被恢复。

8、一般认为细胞质的雄性不育基因存在于线粒体DNA上,为什么?

   答:⑴.在20世纪60年代已发现玉米不育株的线粒体亚显微结构与保持系有明显的不同,从而推断雄性不育性可能与线粒体的变异有关;

   ⑵.分子生物学上发现,玉米的4种类型的细胞质,正常可育型N和不育型T、C、S。它们的线粒体DNA分子组成有明显的区别,而叶绿体DNA并没有明显的差别,且以这4种类型线粒体DNA作模板,在体外合成蛋白质,N型合成的蛋白质与其它3种均不相同,也推断存在于线粒体的基因组中;

   ⑶.已完成的玉米N型和T型的mt DNA限制性内切酶图谱表明,N型mt DNA分别含有6组和5组重复序列,但只有其中的2组是两种mt DNA所共有的。就限制性位点的分布及Southern杂交的结果看,N型和T型所特有的碱基序列分别为70kb(N)和40kb(T),其余500kb的序列相同,且已从T型mt DNA中分离出一个专化玉米T型胞质不育基因Furf13。

   ⑷.Northern blot ting 分析表明,玉米正常株与C型不育株的mt DNA基因atpa,atpb和 ckx*的转录产物的长度和数目不同,可能与C型雄性不育型的表现有直接关系。

   ⑸.除玉米外,在甜菜,矮牵牛,水稻等植物中,也发现不育系与可育系在叶绿体DNA的结构上没有差异,但在线粒体上有明显差别。

9、如果你发现了一株雄性不育植株,你如何确定它究竟是单倍体、远缘杂交F1、生理不育、核不育还是细胞质不育?

   答:如果这植株是单倍体,那么这植株矮小,并伴有其它不良性状,雌雄均为不育,PMC减数分裂中期大多数染色体为单价体;而如果这是远缘杂交F1植株就较高大,营养生长旺盛,PMC减数分裂中期染色体配对异常,雌雄配子均不育但雌性的育性强于雄性。生理不育是不可遗传的。核不育和细胞质不育均为雄性不育,雌配子正常可育,但核不育材料与其它材料杂交的F1一般为可育,F2的育性分离呈现出明显的规律性;而细胞质不育的杂交后代可以保持不育(父本为保持系)或恢复可育(父本为纯合恢复系)。因此,可以从植株性状的遗传、植株形态、花粉母细胞镜检和杂交试验进行确定和区分。

10、用某不育系与恢复系杂交,得到F1全部正常可育。将F1的花粉再给不育系亲本授粉,后代中出现90株可育株和270株不育株。试分析该不育系的类型及遗传基础。

   答:该不育系类型为孢子体不育S(r1r1r2r2)

   S(r1r1r2r2)×N(R1R1R2R2)→F1S(R1r1R2r2)全部正常可育

    S(r1r1r2r2)×S(R1r1R2r2)→F1 1可育(S(R1r1R2r2))+ 3不育(S(r1r1r2r2) + S(r1r1R2r2) + S(R1r1r2r2))

   该不育系的不育类型的遗传基础为:其恢复基因有两个,存在基因互作。无论是杂交还是回交后代中,个体基因型中只有同时存在两个显性恢复基因时,才能起到恢复育性的作用。因此,在回交后代中出现1:3可育株与不育株的分离。

11、现有一个不育材料,找不到它的恢复系。一般的杂交后代都是不育的。但有的F1不育株也能产生极少量F2花粉,自交得到少数后代,呈3:1不育株与可育株分离,将F1不育株与可育亲本回交,后代呈1:1不育株与可育株的分离,试分析该不育材料的遗传基础。

   答:该不育材料是由单显性基因控制的不育系,其基因型为(MSMS)。该材料与可育材料(msms)杂交,其杂合体后代均为不育。一旦F1个体中出现少量可育花粉,自交后代即产生3:1的不育株与可育株的育性分离。F1不育株与可育亲本回交,即产生1:1的 育性分离。至于F1不育株出现少量可育花粉可能是该材料的育性表现受环境条件(日照和温度等)的影响,在某一特定条件下,杂合体表现为可育。



    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多