分享

心算方法

 东方亚男 2014-05-03

心算(口算)方法1

最常用的两位数乘法速算技巧(一)

原理:设两位数分别为10A+B,10C+D,其积为S,根据多项式展开:

S= (10A+B) ×(10C+D)=10A×10C+ B×10C+10A×D+ B×D,而所谓速算,就是根据其中一些相等或互补(相加为十)的关系简化上式,从而快速得出结果。

注:下文中 “--”代表十位和个位,因为两位数的十位相乘得数的后面是两个零,请大家不要忘了,前积就是前两位,后积是后两位,中积为中间两位, 满十前一,不足补零.

A.乘法速算

一.前数相同的:

1.1.十位是1,个位互补,即A=C=1,B+D=10,S=(10+B+D)×10+A×B

方法:百位为二,个位相乘,得数为后积,满十前一。

例:13×17

13 + 7 = 2- - ( “-”在不熟练的时候作为助记符,熟练后就可以不使用了) 3 × 7 = 21

-----------------------

221

即13×17= 221

1.2.十位是1,个位不互补,即A=C=1, B+D≠10,S=(10+B+D)×10+A×B

方法:乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一。

例:15×17

15 + 7 = 22- ( “-”在不熟练的时候作为助记符,熟练后就可以不使用了) 5 × 7 = 35

-----------------------

255

即15×17 = 255

1.3.十位相同,个位互补,即A=C,B+D=10,S=A×(A+1)×10+A×B

方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积 例:56 × 54

(5 + 1) × 5 = 30- -

6 × 4 = 24

----------------------

3024

1.4.十位相同,个位不互补,即A=C,B+D≠10,S=A×(A+1)×10+A×B

方法:先头加一再乘头两,得数为前积,尾乘尾,的数为后积,乘数相加,看比十大几或小几,大几就加几个乘数的头乘十,反之亦然

例:67 × 64

(6+1)×6=42

7+4=11

11-10=1

4228+60=4288

----------------------

4288

方法2:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。

例:67 × 64

6 ×6 = 36- -

(4 + 7)×6 = 66 -

4 × 7 = 28

----------------------

4288

二、后数相同的:

2.1. 个位是1,十位互补 即 B=D=1, A+C=10 S=10A×10C+101

方法:十位与十位相乘,得数为前积,加上101.。

- -8 × 2 = 16- -

101

-----------------------

1701

2.2. <不是很简便>个位是1,十位不互补 即 B=D=1, A+C≠10 S=10A×10C+10C+10A +1 方法:十位数乘积,加上十位数之和为前积,个位为1.。

例:71 ×91

70 × 90 = 63 - -

70 + 90 = 16 -

1

----------------------

6461

2.3个位是5,十位互补 即 B=D=5, A+C=10 S=10A×10C+25

方法:十位数乘积,加上十位数之和为前积,加上25。

例:35 × 75

3 × 7+ 5 = 26- -

25

----------------------

2625

2.4<不是很简便>个位是5,十位不互补 即 B=D=5, A+C≠10 S=10A×10C+525

方法:两首位相乘(即求首位的平方),得数作为前积,两十位数的和与个位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。

例: 75 ×95

7 × 9 = 63 - -

(7+ 9)× 5= 80 -

25

----------------------------

2.5. 个位相同,十位互补 即 B=D, A+C=10 S=10A×10C+B100+B2

方法:十位与十位相乘加上个位,得数为前积,加上个位平方。

例:86 × 26

8 × 2+6 = 22- -

36

-----------------------

2236

2.6.个位相同,十位非互补

方法:十位与十位相乘加上个位,得数为前积,加上个位平方,再看看十位相加比10大几或小几,大几就加几个个位乘十,小几反之亦然

例:73×43

7×4+3=31

9

7+4=11

3109 +30=3139

-----------------------

3139

2.7.个位相同,十位非互补速算法2

方法:头乘头,尾平方,再加上头加尾的结果乘尾再乘10

例:73×43

7×4=28

9

2809+(7+4)×3×10=2809+11×30=2809+330=3139

-----------------------

3139

三、特殊类型的:

3.1、一因数数首尾相同,一因数十位与个位互补的两位数相乘。

方法:互补的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。

例: 66 × 37

(3 + 1)× 6 = 24- -

6 × 7 = 42

----------------------

2442

3.2、一因数数首尾相同,一因数十位与个位非互补的两位数相乘。

方法:杂乱的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看非互补的因数相加比10大几或小几,大几就加几个相同数的数字乘十,反之亦然

例:38×44

(3+1)*4=12

8*4=32

1632

3+8=11

1632+40=1672

----------------------

1672

3.3、一因数数首尾互补,一因数十位与个位不相同的两位数相乘。

方法:乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看不相同的因数尾比头大几或小几,大几就加几个互补数的头乘十,反之亦然

例:46×75

(4+1)*7=35

6*5=30

5-7=-2

2*4=8

3530-80=3450

----------------------

3450

3.4、一因数数首比尾小一,一因数十位与个位相加等于9的两位数相乘。

方法:凑9的数首位加1乘以首数的补数,得数为前积,首比尾小一的数的尾数的补数乘以凑9的数首位加1为后积,没有十位用0补。

例:56×36

10-6=4

3+1=4

5*4=20

4*4=16

---------------

2016

3.5、两因数数首不同,尾互补的两位数相乘。

方法:确定乘数与被乘数,反之亦然。被乘数头加一与乘数头相乘,得数为前积,尾乘尾,得数为后积。再看看被乘数的头比乘数的头大几或小几,大几就加几个乘数的尾乘十,反之亦然

例:74×56

(7+1)*5=40

4*6=24

7-5=2

2*6=12

12*10=120

4024+120=4144

---------------

4144

3.6、两因数首尾差一,尾数互补的算法

方法:不用向第五个那么麻烦了,取大的头平方减一,得数为前积,大数的尾平方的补整百数为后积

例:24×36

3>2

6^2=36

100-36=64

---------------

864

3.7、近100的两位数算法

方法:确定乘数与被乘数,反之亦然。再用被乘数减去乘数补数,得数为前积,再把两数补数相乘,得数为后积(未满10补零,满百进一)

例:93×91

100-91=9

93-9=84

100-93=7

7*9=63

---------------

8463

B、平方速算

一、求11~19 的平方

同上1.2,乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一

例:17 × 17

17 + 7 = 24-

7 × 7 = 49

---------------

289

三、个位是5 的两位数的平方

同上1.3,十位加1 乘以十位,在得数的后面接上25。

例:35 × 35

(3 + 1)× 3 = 12--

25

----------------------

1225

四、十位是5 的两位数的平方

同上2.5,个位加25,在得数的后面接上个位平方。

例: 53 ×53

25 + 3 = 28--

3× 3 = 9

----------------------

2809

四、21~50 的两位数的平方

求25~50之间的两数的平方时,记住1~25的平方就简单了, 11~19参照第一条,下面四个数据要牢记:

21 × 21 = 441

22 × 22 = 484

23 × 23 = 529

24 × 24 = 576

求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。

例:37 × 37

37 - 25 = 12--

(50 - 37)^2 = 169

--------------------------------

1369

C、加减法

一、补数的概念与应用

补数的概念:补数是指从10、100、1000……中减去某一数后所剩下的数。 例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。

补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。

D、除法速算

一、某数除以5、25、125时

1、 被除数 ÷ 5

= 被除数 ÷ (10 ÷ 2)

= 被除数 ÷ 10 × 2

= 被除数 × 2 ÷ 10

2、 被除数 ÷ 25

= 被除数 × 4 ÷100

= 被除数 × 2 × 2 ÷100

3、 被除数 ÷ 125

= 被除数 × 8 ÷1000

= 被除数 × 2 × 2 × 2 ÷1000

在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。因本人水平所限,上面的算法不一定是最好的心算法 心算(口算)方法2

最常用的两位数乘法速算技巧(二)

———万能的方法:适合于任何两位数相乘

方法秘诀:十位乘十位 × 100 + (首数个位 乘 末数十位 + 首数十位 乘 末数个位)× 10 + 个位 乘 个位

例1:85 × 46

8 × 4 × 100 + (5 × 4 + 8 × 6)×10 + 5 × 6 = 3910

例2:26 × 91

2 × 9 × 100 + (6 × 9 + 2 × 1) × 10 + 6 × 1 = 2366

一、十位数是1的两位数相乘(十几乘十几)

乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

一数加上另数个,十倍再加个位积

例:15×17

15 + 7 = 22

5 × 7 = 35

---------------

255

即15×17 = 255

解释:

15×17

=15 ×(10 + 7)

=15 × 10 + 15 × 7

=150 + (10 + 5)× 7

=150 + 70 + 5 × 7

=(150 + 70)+(5 × 7)

为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。 例:17 × 19

17 + 9 = 26

7 × 9 = 63

连在一起就是255,即260 + 63 = 323

二、个位是1的两位数相乘

方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。

例:51 × 31

50 × 30 = 1500

50 + 30 = 80

------------------

1580

因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

例:81 × 91

80 × 90 = 7200

80 + 90 = 170

------------------

7370

1

------------------

7371

原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘

被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43 × 46

(43 + 6)× 40 = 1960

3 × 6 = 18

----------------------

1978

例:89 × 87

(89 + 7)× 80 = 7680

9 × 7 = 63

----------------------

7743

(1)二十几乘二十几

一数加上另数个,廿倍再加个位积

例:26 × 27

(26 + 7) × 2 = 660

6 × 7 = 42

----------------------

702

四、首位相同,两尾数和等于10的两位数相乘

十位乘以大一数,个位之积后面拖。

十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。

例:56 × 54

(5 + 1) × 5 = 30--

6 × 4 = 24

----------------------

3024

例: 73 × 77

(7 + 1) × 7 = 56--

3 × 7 = 21

----------------------

5621

例: 21 × 29

(2 + 1) × 2 = 6--

1 × 9 = 9

----------------------

609

“--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽

略的。

五、首位相同,尾数和不等于10的两位数相乘

两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘

,得数作为后积。

例:56 × 58

5 × 5 = 25--

(6 + 8 )× 5 = 7--

6 × 8 = 48

----------------------

3248

得数的排序是右对齐,即向个位对齐。这个原则很重要。

六、被乘数首尾相同,乘数首尾和是10的两位数相乘。

乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。

例: 66 × 37

(3 + 1)× 6 = 24--

6 × 7 = 42

----------------------

2442

例: 99 × 19

(1 + 1)× 9 = 18--

9 × 9 = 81

----------------------

1881

七、被乘数首尾和是10,乘数首尾相同的两位数相乘

与帮助6的方法相似。两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补

0。

例:46 × 99

4 × 9 + 9 = 45--

6 × 9 = 54

-------------------

4554

例:82 × 33

8 × 3 + 3 = 27--

2 × 3 = 6

-------------------

2706

八、两首位和是10,两尾数相同的两位数相乘。

十位积加上个位,个位平方后面接

两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。

例:78 × 38

7 × 3 + 8 = 29--

8 × 8 = 64

-------------------

2964

例:23 × 83

2 × 8 + 3 = 19--

3 × 3 = 9

--------------------

1909

B、平方速算

一、求11~19 的平方

底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。

例:17 × 17

17 + 7 = 24-

7 × 7 = 49

---------------

289

参阅乘法速算中的“十位是1 的两位相乘”

二、个位是1 的两位数的平方

底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。

例:71 × 71

7 × 7 = 49--

7 × 2 = 14-

1

-----------------

5041

参阅乘法速算中的“个位数是1的两位数相乘”

三、个位是5 的两位数的平方

十位加1 乘以十位,在得数的后面接上25。

例:35 × 35

(3 + 1)× 3 = 12--

25

----------------------

1225

四、21~50 的两位数的平方

在这个范围内有四个数字是个关键,在求25~50之间的两数的平方时,若把它们记住了,就可以很省事了。它们是:

21 × 21 = 441

22 × 22 = 484

23 × 23 = 529

24 × 24 = 576

求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。

例:37 × 37

37 - 25 = 12--

(50 - 37)^2 = 169

----------------------

1369

注意:底数减去25后,要记住在得数的后面留两个位置给十位和个位。 例:26 × 26

26 - 25 = 1--

(50-26)^2 = 576

-------------------

676

五? 四十几的平方

方法一的口诀:

廿五减去个位补,个补平方后面拖。

例:47 × 47

25 - 3 = 22

3 × 3 = 9

-------------------

2209

方法二的口诀:

十五加上个位数,个补平方后面拖

例:43 × 43

15 + 3 = 18

7 × 7 = 49

-------------------

1849

六?五十几的平方

廿五加上个位数,个位平方后面拖

例:58×58

25 + 8 = 33

8 × 8 = 64

-------------------

3364

七、“十位数相差1,个位数互补”的两位数相乘 37×43、62×58、81×99 方法一的口诀:

大十平方减去一,小个添零加个积,前后相接在一起。

“大十”指的是“大数”十位上的数字;“小个”指的是“小数”个位上的数字,,“个积”是指个位数的乘积。

例:62 × 58

6 × 6 - 1 = 35

8 × 10 + 2 × 8 = 96

3596

方法二:

大十平方添两个零,减去大个平方。

“大个”指的是“大数”个位上的数字。

例:62 × 58 相当于(60+2)×(60-2)

6 × 6 × 100 - 2 × 2 = 3596

八、九十几乘九十几

方法一的口诀:

两个个补被百减,个补乘积后面写。

100-被乘数个位上的补数-乘数个位上的补数

再接被乘数个位上的补数与乘数个位上的补数的乘积

例:97 × 98

100 - 3 - 2 = 95

3 × 2 = 06

-------------------

9506

方法二:

八十加两个位数,个补乘积后面拖。

80+被乘数个位数+乘数个位数

再接被乘数个位上的补数与乘数个位上的补数的乘积

例:93 × 92

80 + 3 + 2 = 85

7 × 8 = 56

8556

九、一百零几乘一百零几

一数加上另数个,个位乘积后面凑。

“另数个”指的是另一个数字的个位数

例:108 × 107

108 + 7 = 115

8 × 7 = 56

-------------------

11556

十、某数乘以十五

原数加上它的一半,再添一个零。

例:246 × 15

(246 + 246 ÷ 2) × 10 = 3690

C、加减法

一、补数的概念与应用

补数的概念:补数是指从10、100、1000??中减去某一数后所剩下的数。 例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。

补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为

简单的加法运算等等。

D、除法速算

一、某数除以5、25、125时

1、 被除数 ÷ 5

= 被除数 ÷ (10 ÷ 2)

= 被除数 ÷ 10 × 2

= 被除数 × 2 ÷ 10

2、 被除数 ÷ 25

= 被除数 × 4 ÷100

= 被除数 × 2 × 2 ÷100

3、 被除数 ÷ 125

= 被除数 × 8 ÷100

= 被除数 × 2 × 2 × 2 ÷100

心算(口算)方法3

电视速算讲学教材

1、由个相同的数字组成的两个两位数的加法算式计算方法:先由十位加个位,和是一位写两次,和是两位再相加,第二和插第一和间。

36+63=99(3+6=9)

48+84=132(4+8=12、1+2=3)

2、由两相同的数字组成的两个减法算式方法:十位减个位,差乘以9: 63-36=(6-3)×9=27

74-47=(7-4)×9=27

3、由三个相同的数字组成的两个数三位数的减法算式,计算方法,首尾数差乘以9,所得积间插个9。

451-154=297(4-1)×9=27

846-648=198(8-6)×9=18

4、被减数和减数成互补数(两数之和为整10、100、1000??称为互补数)。被减数十位减5后乘以2得和:

63-37=(63-50)×2=13×2=24

651-349=(651-500)×2=302

523-77=(500-100)+23×2=446

762-38=700+(62-50)×2=724

5、被减数是三位数,减数是两位数,并且十位和个位都借位的减法算式: 316-87=216+13=249

6、(43×47)此两数称为首同尾互补的计算方法:(两数之和为整10、100、1000称互补)。一个首数加1乘以另一个首为首(首+1)×首为首,尾×尾为尾。

(43×47)=4×(4+1)为首3×7为尾=2021

343×347=34×(34+1)为首,3×7为尾,乘数是三位数(3×7为21不足三位数,在前加0)=119021

7、首邻尾互补(33×47)的计算方法:用较大数的十位数的平方减1为首,100减去较大数个位的平方为差为尾,得其积:

33×47=(42-1)15(100-49)51=1551

124×136=132-1连100-62=16864

8、尾同首互补(26×86):计算方法:首数乘以首数加1个尾数写在前面,尾×尾写在后面。

26×86=(2×8+6)22(6×6)36=2236

216×816=(2×8×10+16)176(162)256=176256

9、(2236÷26)除式中的被除数的后两位是除数的个位的平方。在这种特殊的除法算式中,商的十位与除数的十位数是互补的,而且个位相同。

2236÷26=86 2481÷49=69

10、同数与互补数相乘(33×82)计算方法:在互补数首数上加1后与同数的一数相乘为首,尾乘以尾写为尾(注两乘数小于10时,前补上一个0) 33×82=3×(8+1)27(3×2)6=2706

333×82=27306 3333×82=273306

333333×82=27333306

11、两乘数的个位都为1的算式(41×81)计算方法:首×首在前,首+首在中(大于10向左进1)尾为1。

41×81(4×8)32(4+8)12=3321

61×31=1891

431×471=(430×470)202100(43+47)900+1=203001

12、例9的逆运算:在被除数和除数的个位都为1的除式中,商的个位以必为1,而商的十位为被除数的十位数(如不够向前借10)减除数的十位数。 1891÷31=(9-3)1=61 33121÷81=(12-8)1=41

13、13216700÷25=132167×4=528668

13216775÷25=132167×4+(75÷25)3=52867

14、46.52÷0.5=46.52×2=93.04

243×0.5=243×2=486

15 、425÷0.125=425×8=3400

16、万能计算法:首×首写在前面,尾×尾写在后,加内项积与外项积的和10倍。

48×76=2848+(8×7+4×6)×10=2848+800=3648

74×39=2136+(7×9+4×3)×10=2136+750=2886

17、补数求积计算法:(两数和为10、100、1000时两数称为补数,如2的补数是8)。两乘数的位数要相同,一乘数减另一乘数的补数为首,两数的补数积为尾。

+4 +13

例如:96×87=(96-13)83(4×13)52=8352

+76 +1

24×99=(24-1)23(76×1)76=2376

18、余数求积法(大于10、100、1000、??)的数称余数,15的余数为5。一

首数+另一数的余数为首,两于数积为尾,积满10向前进1。

例:12×15=(12+5)17(2×5)10=180

13×12=(13+2)15(3×2)6=156

103×130=(130+3)133(30×3)90=13390

19、中间是零的两个三位数相乘:首×首在前,尾×尾在尾,内项积加外项积在中(尾×尾不足10时在前补0)

例:201×304=(3×2)6(3×1+2×4)11(1×4)04=61104

406×304=123424

20、(45×12)几十几乘以十几,被乘数加首尾积,和的后面写上个位积的个位,满10向前进1。

例:45×12=[45+(4×2)]53连(2×5)10=540

67×14=(67+6×4)91(7×4)28=938

21、两位数乘以11,十位个位两边拉,中间一数两和插。两位数乘以111,十位个位两边拉,中间两数两和插(和是两位先进一位,两次进位才对)。 53×10=5(5+3)3=583

53×111=5883 53×111111=588883

47×11=517 47×111=5217

47×11111=521117

583÷11=(8-3)3=53(逆运算)

517÷11=(11-7)7=47(逆运算)

22、平方的算法首×首连尾×尾。加首尾的20倍

892=6481+8×9×20=7921

4322=160904+4×3×2000+4×2×200+3×2×20

=186624

23、尾数为5的两数相乘时,当两首数都为偶数或都为奇数时,这两数的积尾数为25,积首为首数积加首数和的一半求得:

45×85=3825→4×8+(4+8)÷2→25=3825

当两个数的首数为一奇一偶时,积尾为75,积首和上算法一样,取半时取整数,尾数为25的数

24×95=4275→4×9+(4+9)÷2→36+6=3240

24、135×24=135×20+135×4=2700+540=3240

25、一个完全平方数(能被开方的数)的尾数一定加0、1、4、5、6、9。

26、两个连续自然数的平方和,等于这两个数的积的二倍加1。

82+92=(8×9)×2+1=145

113为两个连续自然数的和求这两个自然数是多。

27、两个连续奇数(或偶数)的平方和,等于这两数的积的二倍加4。 52+72=(5×7)×2+4=74

22+42=(2×4)×2+4=20

28、两个连续自然数的平方差,等于这两个数的和

92-82=9+8=17

快速写出11—99的平方数。

112=121 122=121+12+11=144

29、两个连续奇数或偶数的平方差,等于这两个数的和的二倍。

72-52=(7+5)×2=24

==400

30、两个连续奇数或偶数的积,等于它们的和除以2的平方减1。

7×5=62-1=35 (7+5)÷2=6

4×2=32-1=8 (4+2)÷2=3

==625

31、一个数的奇位数字的和与偶位数字的和相差数,是零或是11的倍数,这个数就能被11整除。

求10840235000000÷11的余数是多少?

32、一个数的末三位数能被125整除(或是零),这个数就能被125整除。

33、一个数的末三位数能被8整除(或是零),这个数就能被8整除。

34、一个数的末二位数能被4整除(或是零),这个数就能被4整除。

35、一个数的末二位数能被25整除(或是零),这个数就能被25整除。

36、一个数的各位上的数字的和能被9整除,这个数就能被9整除。

37、一个数的各位上的数字的和能被3整除,这个数就能被3整除。

38、尾数为5的数的平方,首加1乘另一首为首,25为尾。352=3(3+1)首25尾=1225,452=4×5连2025

39、92=81 992=9801 9992=998001 99992=99980001

8+1=9 98+01=99 998+001=999 9998+0001=9999

123456789×999999999=12345678887654321

练习方法:每种方法自己每次出10道题目,自行计算,记下时间,直到超过计算器的速度为止。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多