因为工作需要,我的收藏夹里收集了很多数据相关的产品,其实加入收藏,也一直没有时间好好去研究。这几天恰好有时间翻出来逐个体验了番,顺手贴出来,大家一起研究。 受篇幅所限,这里只贴了4个,更多的请期待后续。 1. Heap
面向市场:
如何运作:
Define(我理解成配置),主要是两块,一个是配置事件,另一个是配置用户细分群体。 比如,你想要观测example页面上的Sign Up按钮的点击情况,不用去找开发工程师给你埋点,只需要打开Define频道,定义一个事件,选中这个页面,然后在可视化的页面上点击这个按钮,命名,然后配置是不是该页面独有(假设某个按钮在多个页面上都存在,那么如果不设置为该页面独有,数据统计则是所有按钮的点击了),然后事件就配置成功了。见下图: 定义用户群:无细分,不分析。只有有了用户细分,才更好观测每一类用户的具体行为,根据行为的不同再针对不同的用户采取不同的推送、设计等个性化策略。下面就是Heap定义一个用户群的界面,你可以使用“已经购买了至少5次”的条件来定义一个“高价值客户”群体,或者使用“至少登陆了2次“且”上传了自己的档案照片”的条件去定义一个“活跃用户”。一旦你定义了一个用户群体,你就可以使用不同的用户群去看他们的行为路径、转化漏斗和其他的群体以及剩下的用户有何不同。 至于用户分群的选择条件,应该也基于之前定义的各种事件,加上一些用户的属性。在我们的内部产品无线数读平台上,我们也提供了用户分群工具,可以让开发者根据终端属性(品牌、机型、网络类型、运营商),以及使用行为(比如启动次数在某段时间内大于多少次且某段时间内小于多少次等),加上用户的属性(性别、年龄段、地域、爱好……)等多种标签对用户进行细分。其实背后都是一个道理。 在分析这块,Heap做得还比较简单,无非就是一个趋势图(研究各种事件的走势,这是最基本的),还有转化漏斗(Funnels), 使用者可以将之前配置的事件,按一定的次序配置成一个漏斗,进而监测转化情况。 在配置漏斗这块也有可取之处,比如它提供了更多维度对漏斗进行细分,可以看不同类型的用户的转化漏斗有何不同。 此外,Heap虽然没有提供用户行为的录屏,但是通过路径流的方式予以呈现:
不过,它提供14天的免费试用,有兴趣的同学不妨先试试。
Trak.io的重心是触达正确的用户,和他们建立联结,不管是提升用户的忠诚度,还是维系重点用户的关系。但是要更好去实现这个目标,Trak.io必须要“记录数据”。 不好意思,因为LOFER压缩了大图,我再来一张局部图:
虽然没有太高的技术含量,就是把用户的能够被抓取到的信息集中起来,然后还原TA的操作日志。 你设想下,如果聚焦于某个个体是多么可怕的一件事情,任何人只要被授权,就知道你的一切信息……奇怪了,老外不是很注重个人隐私的吗?
2. 用户状态的变更提醒 3. 团队协作管理
看似比上面的网站更具技术含量。因为记录点击的结果已经不是太高的门槛,通过一些URL的特征埋点即可实现。但是用户虽然最终点击了某个按钮,可是他的鼠标却在屏幕上反复游移不定,可能说明这个按钮的位置和外观设计不符合用户的认知和预期。所以观察用户的鼠标轨迹是很多用户研究同学和交互设计同学很喜欢干的一件事情。 不用从各种数据报表去猜测用户怎么用的,直接去看好了。 2. 实时的点击和移动热图 直观的鼠标轨迹是很赞,但是我们怎么会有时间去一个个看视频呢?所以热图是一种数据的聚合,从而能够帮我们判断大多数人是如何点击如何滚屏。 3. 滚屏热图 这个功能我还是第一次遇到,有时提升转化不仅仅是用户发生了点击,而是要注意到。我们没有办法去装个眼动仪捕获用户的眼球轨迹和视觉热点,但是内容有没有被用户使用滚屏出现在当前屏幕上,我们却是有办法去抓取的。所以Mouseflow提供了Scroll Heatmaps,快来看看你辛辛苦苦做的Banner有没有机会被用户看到吧。没有看到则想办法去换个更优的位置,看到不点则是Banner可能设计得太烂。 4. 页面分析 除了直观的轨迹和热图,简单的数据统计报表是必不可少的了,毕竟单个群体很难代表大众,热图也不可能直接转化成数据从而做更多二次加工和处理。所以定量的用户行为分析报表可以作为一个基本补充。 不过仔细去看,Mouseflow既然聚焦于用户行为分析,提供的页面分析报表也有不少可取之处,比如它除了提供简单的PV\UV\停留时长\退出率\点击次数等,还提供了页面的更多信息,比如页面的大小、下载的时长等信息。
专门面向手机应用(App)的用户行为分析工具。顾名思义(o(╯□╰)o),AppSee致力于让你亲眼看到,而不猜测用户的行为。在此之前,无论是功能强大的Google analytics还是聚焦于APP分析的Flurry, 抑或是我们国内声名大噪的友盟平台,都是比较传统的数据报表系统,提供各种各样的报表帮助你去洞察用户的行为。AppSee则采用了“直接录屏给你看”的简单商务模式。 直接看到用户的每一步操作, AppSee能够记录每个屏幕,用户的每次点击以及各种手势动作。说实话,鉴于移动APP里面有很多隐形的交互,确实直观来看会比较激动人心,给你一个点击按钮的列表,谁愿意看啊。值得一提的是,现在很多聚焦于APP分析的产品都提供了系统崩溃的报表,但是很多没有解决开发者想要重现错误的需求。只有重现才能帮开发者更好去分析崩溃产生的原因。AppSee帮助你重现错误,你可以单独看看CRASH的录屏。 2. 触摸热图(Touch heat maps) 从个体聚合为整体的热图。目前貌似没有看到触摸热图和用户细分结合的功能。 3. 分析报告(In-App analytics) 首先,聚焦于“消费者体验提升”领域,数据产品大有可为,见下图:
1. 要先明确目前的现状: 消费者到底哪里体验不好了,或者哪里不满意了要先有数据——这里的数据,不必局限于具体的数值类指标,用户的声音、用户的反馈都可以认为是数据。那么这一步是为后续的各种分析、挖掘提供原材料,同时也进行一些可视化展现工作。一般来讲,很多数据可以帮助我们去还原现实:
2. 要对现状进行分析和挖掘: 有的时候,现状能够直接告诉你发生了什么事情,是什么原因。但是大多数时候,现实需要经过进一步的挖掘,才能找到原因,进而找到解决方案。比如,当现实告诉你,从购物车到订单的转化漏斗不够健康,尤其是新版本发布后,此漏斗转化率大幅度下跌,如果这期间没有其他因素影响,或许你可以推论出是新版本的变更导致,但是若有别的因素,比如渠道活动,比如大量新用户涌入……所以,要经过多维交叉分析,才能进一步锁定原因,比如按用户类型分布,发现大部份下跌来自新用户,再看新用户的上涨幅度等等。有时,还有必要结合定性的调研予以验证或进一步挖掘。 3. 要有改善计划和方案: 当清楚了现实又知晓了原因后,就可对症下药做出改善计划。可能是流程的完善,可能是规范的落实,也有可能是产品系统的可用性、易用性改善。值得一提的是,通常我们说的数据产品是指从数据的采集、计算到报表展现的平台,也即是商务智能系统。改善环节也可以做数据产品,只是非传统意义上的报表型数据产品,而是数据驱动的系统,比如可以把前两个环节沉淀的数据回流到业务系统中,做一些机制触发,比如CRM平台,当某个用户被判断属于环节一中的某个用户群体后,向他发送定制的个性化消息。或者设计一个算法模型,去改善搜索结果等等。 4. 有了改善方案,必然要评估方案的效果
以上四大环节,都有众多数据产品涵盖,但是一口气吃不成胖子,目前还是聚焦于环节一之用户行为研究吧, 先给出我有兴趣的网站,最后我会找机会围绕用户行为研究横向做个贯通评测和分析。 所以,接上篇继续: 1. VWO (https://)
VWO是什么意思呢?看看全称:Visual Website Optimizer,是一个定位于可视化网站优化服务网站。 这个网站的第一印象,可视化太赞了。然后,太有信心了,随便取下他怎么描述自己的产品的形容词:
特色: 从界面上讲,VWO上两个频道比较突出,一个是Create(创建),一个是Campaigns(活动)。
1. Testing & Experimentation(测试与实验)
2. 可视化配置(Visual Editor) 可视化配置的目标就是:向IT团队说拜拜!当然,IT团队更大的价值在于实现工具,然后让产品、运营去玩。
其实和上篇提到的Mouseflow网站类似,提供录屏及回放功能。这里就不具体介绍了。 2. 热图(Heatmap) 热图是对各Session的聚合,从而体现群体特征。热图是Clicktale的主打功能,所以热图的类型也非常多。
我们可以很简单去统计用户的业务数据,比如购买了什么,我们也不难统计用户点击了什么,但是过去想要统计用户看了什么,却是一件相当麻烦的事情。 只有少数大公司有专门的用户研究团队,也只有少数的大公司会购买高级的眼动仪,设置专门的用户研究实验室,然后邀请用户来到实验室,监测他如何看网站。眼动仪在测试广告、设计效果上,确实会非常直观。但是毕竟测试成本较高,且不可避免受到少数样本的影响。而Clicktale引用一个独立的研究结论,认为鼠标和眼珠的运动有着84%到88%的相关性,所以他们提供了高精度的鼠标移动热图,目的是用此来表达用户实际上注意到了什么。 不一定是你期望他们点击的链接!这里记录的是用户的任何点击,包括空白区域以及像链接的静态图片上的无效点击。 从而可以看看当一个静态图片不断被用户点击时,是否应该调整成真正的链接,否则你就让用户失望了~ 本来我看了鼠标移动热图基于的理论基础时,因为鼠标移动轨迹和眼球的移动有着很大的相关性,所以在没有办法获取对于用户研究轨迹的跟踪前,是使用鼠标移动轨迹来代替的。 但是Clicktale却另外还提供了注意热图(Attention heatmaps)。 Attention的可视化分析,专门有一个术语:Visual Attention。其价值当然是不言而喻的。按照AIDA模型,消费者要产生行动,一般要经过四大步,首先要能够注意到,其次会产生兴趣,有了兴趣后能够自己主动去发掘细节、进行对比研究,之后产生行动。所以能够吸引到用户注意是转化的第一步。
好像Clicktale认为单纯有鼠标轨迹以及注意力热图还不够!假设当用户确实滚动到了页面底部后,确实对某个Banner产生了注意力,这证明这个Banner的设计确实达到了预期。可是,可是,事实的结果是该Banner确实很少有人注意到,那是否是因为用户压根就没浏览到页面底部呢? 所以好的内容,还必须给予它足够的曝光机会。 通过滚屏深度热图可以看看用户最多看到你的长页面的哪个屏幕。从而可以帮你发现,哪些页面应该被设计得更短一些,哪些页面应该更长一些,哪些内容应该调整它的位置到上面的屏幕。 滚屏深度热图的DEMO: 2.5 链接分析:用户是如何点击链接的 除了点击,还有很多细节。鼠标指向你的观测页面的任何链接,悬浮框里会出现对此链接的详细监控数据:
至于还有更加细节的指标,大家自行研究吧,比如什么Time to Click(页面加载完毕到鼠标点击的时间消耗),Hover Order(悬停的次序)………… 能够生成实时的访客基于页面到页面的转化漏斗,展示最有价值的路径以及用户在哪里流失。并且能够从转化漏斗直接连接到会话回放。 结合高级筛选器,可以选择某种特定特征的用户群体,看他们的行为以及漏斗的转化情况: 具体介绍:高级筛选器 转化漏斗 表单是不令人愉快的。用户讨厌填写任何表单!有时表单是影响转化率的最大因素。 但是为了商业利益、或者更好给用户服务,我们可能无法避免让用户填写表单。 那么就像医院里的护士让小孩子去打针一样,需要一些伎俩,既能完成任务又不至于让用户讨厌或者中途流失。 那么首先应该对现状足够地了解:用户在表单上每个字段的填写时长、哪些字段会被留空不填,哪些字段被多次修改,在什么字段上用户流失! 表单行为分析利器:
热图基于页面,漏斗很多也是基于页面,表单也是在页面上。但是去哪里能够看到网站所有页面的表现,以及监控我的重点页面,对其中的关键指标一览无遗呢? Clicktale提供以页面为核心的分析工具,让你基于页面,串联起以上的所有工具——充分考虑业务诉求啊。 运作模式: |
|
来自: silence_33 > 《待分类》