分享

构造全等三角形巧证几何题

 昵称34194376 2016-06-11

全等三角形是初中平几的重要内容之一,在几何证题中有着极其广泛的应用。然而在许多情况下,给定的题设条件及图形并不具有明显的全等条件,这就需要我们认真分析,仔细观察,根据图形的结构特征,挖掘潜在因素,通过添加适当的辅助线,巧构全等三角形。借助全等三角形的有关性质,就会迅速找到证题途径,直观易懂,简捷明快。现略举几例加以说明。

.证线段垂直

1.已知,如图1,在,AB=2BC,求证:

1

分析与证明:本题可先作的平分线BD交AC于点D,由,又,得到。则为等腰三角形。再取AB中点E,连DE,借助等腰三角形的性质,得到。再由,BD=BD,得到。由全等三角形的对应角相等,得到,即

.证线段的倍分

2.已知,如图2,等腰中,的平分线交AC于D,过C作BD的垂线交BD的延长线于E。求证:BD=2CE(湖北中考题)

2

分析与证明:要证BD=2CE,可延长BA、CE交于点F。由BE平分,得到为等腰三角形。根据等腰三角形的性质可得CE=EF,即。再由,AB=AC,,得到,从而由全等三角形的对应边相等立即得到BD=CF=2CE。

.证角相等

3.已知,如图3,在中,D是BC边的中点,E是AD上一点,BE=AC,BE的延长线交AC于点F,求证:

3

分析与证明:由AD是中线,可“延长中线一倍”,借助中线性质构全等三角形。延长AD至G,使DG=AD,连BG,由DG=AD,,BD=CD得到。由全等三角形的对应边相等,对应角相等,得到AC=BG,。而AC=BE,则BE=BG,所以,而,从而得到

.证角不等

4.已知:如图4,在中,,AD是BC边的中线。

求证:

4

分析与证明:由AD是中线,可“延长中线一倍”,借助中线性质构全等三角形。延长AD至E,使DE=AD,连BE。由DE=CD,,BD=CD,得到。由全等三角形的对应边相等,对应角相等,得到BE=AC,,在中,由,得到,而,所以

.证线段相等

5.已知:如图5,在中,D是BC边的中点,的平分线于E,交AB于点F,交AC的延长线于点G。求证:BF=CG。

5

分析与证明:要证BF=CG,显然要构造三角形找全等。由ED垂直平分BC,连EB、EC,由垂直平分线性质可得,EB=EC。又AE为的平分线,且,根据角平分线性质可得,从而(HL)再由全等三角形的对应边相等立即可得BF=CG。

.证线段不等

6.已知:如图6,在中,AB=AC,P是三角形内一点,且,求证:

6

分析与证明:PB、PC虽在同一三角形中,但与已知条件无直接联系,可利用图形变换构全等三角形。将绕顶点A逆时针旋转,使AB与AC重合,得,则,从而转化为比较PC与QC的大小,为此只须证即可。由,根据全等三角形的对应角相等,对应边相等得到,AQ=AP,PB=QC,所以,从而,即。由大角对大边得到,即

.证线段和差相等

7.已知:如图7,在中,,CD是的平分线,求证:BC=AD+AC

7

分析与证明:由CD是的平分线,可利用角平分线的对称性。在BC上取一点E,使CE=CA,连DE,由CA=CE,,CD=CD,可得。由全等三角形的对应边相等,对应角相等,得到AD=ED,且,而,得到,从而,所以

.证线段和差不等

8.已知:如图8,D为的BC边的中点,的平分线分别与AB、AC交于点E、F,求证:

8

分析与证明:直接论证,条件不足,可设法将有关线段集中于同一三角形中,为此延长FD至M使DM=FD,利用角平分线性质构全等三角形,帮助解决。延长FD至M,使DM=FD,连结BM、EM。由DM=DF,,BD=CD,得到。由全等三角形的对应边相等得到BM=CF。由,而,所以;又由,从而。再由,DE=DE,得到。同样由全等三角形的对应边相等得到EM=EF。而,所以

从以上几例可以看出,有些比较棘手的平几证题百思不得其解时,根据图形的结构特点,添加适当的辅助线,巧构全等三角形,可迅速找到证题途径,使问题迅捷获证。真可谓“山重水复疑无路,柳暗花明又一村”。

 

 

 

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多