空格一直以来,以Meta分析为代表的二次研究备受研究者们的热捧。针对不同的疾病,其病情的多样性意味着可以存在多种的治疗方式。如果单纯的想知道某种治疗方式是否有效,可采用传统的Meta分析,纳入既往所有的报道。但在临床应用中,我们往往需要比较不同治疗手段之间的疗效,对其疗效和安全性进行排序,在这时采用传统的Meta分析则显得捉襟见肘。面对这样的需求,网状Meta分析应运而生,基于间接比较的思想,将不同的干预通过相同或不同的对照进行比较。目前,许多循证医学中心致力于推广使用不同的软件来实现网状Meta分析的过程,如湖北医药学院附属太和医院循证医学中心的曾宪涛老师就曾在丁香园网站推出一系列的简介,有兴趣者可作深入了解。 空格面对这么好玩的分析方法,小编也心痒难耐,特地根据网上的教程,以中医非药物治疗面瘫为例,作了一次实践,希望对大家有借鉴作用。 前期准备
空格中国人群;临床随机对照试验(凡文献中提及“随机分组”的均纳入);干预为面瘫的中医非药物治疗研究;对照为常规头针针刺或面瘫常规药物治疗。
空格研究对象为多种疾病类型(如包括其他类型疼痛、疾病)的研究、多种方式联合治疗(如针药联合、针推联合)的研究、涉及中药治疗的研究、无法获得干预和对照组数量数据的研究。
空格中国知网(CNKI,期刊和学位论文)、万方数据(期刊和学位论文)、中国生物医学文献服务系统(SinoMed)。
空格首先,用文献管理软件将初检文献归类、整理,排除重复收录文献。其次,通过阅读每篇研究的题目和摘要排除明显不符合纳入标准的不相关研究。第三,对于任何一篇潜在的相关研究都要求进一步阅读全文以判断是否符合纳入排除标准。第四,对于信息不全者进行筛选排除。最后,确定最终纳入研究,进入数据提取阶段。
空格对纳入的研究进行数据收集与整理。制定相应的表格对各研究的基本信息和数据进行收集。认真阅读纳入的文献,收集的基本信息有:发表年份,第一作者名字,干预和对照组总例数,干预和对照组的有效例数。对同一临床试验的不同时期的结果报告,或其它形式(如会议)的重复发表报告,仅作为1篇临床试验报告予以纳入。
空格面瘫缓解有效率(包括治愈、显著有效、有效)。
空格应用Stata13.0的mvmeta包进行统计分析。利用ifplot命令作图,基于直接比较结果,计算直接比较和间接比较的差异,并进行Z检验,检测不一致性;本研究所用结局指标为计数资料,因此合并效应量时采用比值比(Odds ratio,OR),并用95%可信区间(Confidence interval,CI)进行区间估计;对于所纳入研究的发表偏倚,利用netfunnel命令绘制漏斗图进行评估;利用pbest和sucra功能对网状Meta分析结果进行排序。 分析过程(附stata程序) 程序介绍:
net install mvmeta, from (http://www.mrc-bsu./IW_Stata/meta)
net install st0325, from(http://www./software/sj14-1)
net install network_graphs,from (http://www.mtm.)
空格如教程所说:stata采用networkplot绘制证据关系图,只接受两个变量。在这个过程中,需要将三臂或者四臂的研究分别拆分成若干个两臂研究,如t1 vs. t2 vs. t3 vs. t4,必须拆分成t1 vs. t2,t1 vs. t3,t1 vs. t4,t2 vs. t3,t2 vs. t4和t3 vs. t4,整理成以下格式:
networkplot t1 t2,lab(1 2 3 4 5 6 7 8 9)
gen ne1=n1-r1 gen ne2=n2-r2 metan r1 ne1 r2 ne2, fixed or gen logOR=log(_ES) netweight logOR SelogOR t1 t2
rename _selogES SelogOR ifplot logOR SelogOR t1 t2 study,eformlab (1 2 3 4 5 6 7 8 9)
netfunnel logOR SelogOR t1 t2,by comparison
gen ne1 = n1-r1 gen ne2 = n2-r2 gen ne3 = n3-r3 gen ne4 = n4-r4 gen ne5 = n5-r5 gen ne6 = n6-r6 gen ne7 = n7-r7 gen ne8 = n8-r8 gen ne9 = n9-r9 #本研究中,9作为共同干预措施,因此1~8之间需两两计算协方差# *1与2之间协方差* metan r2 ne2 r1 ne1,fixed or nointeger gen S1 =(_selogES)*(_selogES) gen S12 = (S22+S11-S1)/2 drop _SS _ES _selogES _LCI _UCI _WT S1 ……下同……
mat P = I(8) + J(8,8,1) mvmeta y S, bscov(prop P)
intervalplot, mvmeta eform null(1)labe(8 1 2 3 4 5 6 7 9)
mat P = I(8)+J(8,8,1) mvmeta y S, bscov(prop P) pbest(max, allzero gen(prob)) sucra prob*,mvmeta 备注:程序中根据研究结局来确定排序的标准,最终筛选出最佳的治疗,比如有效率用max,不良反应率选min。
结果解读
空格本次研究选取了1~9个(1~8为非药物治疗,9为常规药物治疗)治疗方式,下图展示本次纳入研究中所有治疗的关系,点越大线越粗表示涉及的研究越多。
空格不同的直接比较对网状 meta分析的结果的影响不同,因此有时候需要评估不同直接比较对网状 meta分析结果的影响,并找出影响网状meta分析合并结果最多的直接比较。 空格行是直接比较,列是间接比较,矩阵形成的是不同对照措施直接比较结果对不同对照措施的网状Meta分析结果的影响程度。如第一个值22.0%,代表1和2的直接比较对网状meta中1和2间接比较的影响程度;6.9%代表1和2的直接比较对整个网状meta分析结果的影响程度。网状Meta分析中的不同的直接比较对网状Meta分析的结果的影响不同,因此有时候需要评估不同直接比较对网状Meta分析结果的影响,并找出影响网状Meta分析合并结果最多的直接比较。 空格上图显示,在整个网状Meta分析中,7和9(对照)的研究最多,对整个网状Meta分析结果的影响程度也最大,其次是2和9(对照)。
空格不一致性是指网状Meta分析中直接比较和间接比较存在差异,这会影响网状 Meta分析的真实性,因此需要在进行网状Meta分析时进行检测,并分析不一致性的产生原因。若IF接近0或者RoR接近1,就说明直接证据和间接证据非常一致。 空格结果判读举例:上图提示闭合环1-6-7可能存在统计学不一致性。原因在于,在直接比较中,1作为6和7的参照组,往往得到其疗效劣于6和7的结果;而在间接比较中,1、6和7的比较组是9,此时1的效果有可能优于6和7。
空格在 stata形成的漏斗图上,纵坐标是各个研究的效应量,横坐标上各个对照组的总的效应量。上图对称分布说明,该网状 Meta分析可能不存在小样本效应或者发表偏倚。
网状Meta结果显示: 空格与9相比,1、2、3、5、6、7、8有效率合并效应量的可信区间均大于1,表明差异有统计学意义,这几种中医非药物疗法的效果比9好。 空格与1相比,2、6、7有效率的合并效应量的可信区间均大于1,表明差异有统计学意义,这几种中医非药物疗法治疗面瘫的效果比1好。 空格与3相比,6有效率合并效应量的可信区间大于1,表明差异有统计学意义,其效果比3好。 空格其余两两治疗方式之间对比的网状 Meta 分析结果显示治疗面瘫有效率的差异无统计学意义。
结果排序评价表
备注:SUCRA分值为100%,越大代表该治疗措施可能越好 PrBest是该治疗措施成为最好治疗措施的概率 MeanRank是该治疗措施的评价排序 空格根据排序结果和判定方法,初步认为7在本研究8种中医非药物治疗(9为常规药物治疗)中是最优的选择,其次是3和6。 感谢林威的倾情奉献! |
|