分享

高中物理:电磁学导棒问题归类分析㈠

 许愿真 2016-11-14
近十年高考物理试卷和理科综合试卷,电磁学的导棒问题复现率高达100%(98年无纯导棒外),且多为分值较大的计算题.为何导棒问题频繁复现,原因是:导棒问题是高中物理电磁学中常用的最典型的模型,常涉及力学和热学问题,可综合多个物理高考知识点.其特点是综合性强、类型繁多、物理过程复杂,有利于对学生综合运用所学的知识从多层面、多角度、全方位分析问题和解决问题的能力考查;导棒问题是高考中的重点、难点、热点、焦点问题.www.ks5u.com
导棒问题在磁场中大致可分为两类:一类是通电导棒,使之平衡或运动;其二是导棒运动切割磁感线生电.运动模型可分为单导棒双导棒
    ()通电导棒问题
    通电导棒题型,一般为平衡和运动型,对于通电导棒平衡型,要求考生用所学物体的平衡条件(包含F=0M=0)来解答,而对于通电导棒的运动型,则要求考生用所学的牛顿运动定律、动量定理以及能量守恒结合在一起,加以分析、讨论,从而作出准确地解答.
    1:如图(1-1-1)所示,相距为d的倾角为α的光滑平行导轨(电源ε、r和电阻R均已知)处于竖直向上的匀强磁场B中,一质量为m的导棒恰能处于平衡状态,则该磁场B的大小为           ;当B由竖直向上逐渐变成水平向左的过程中,为保持棒始终静止不动,则B的大小应是         .上述过程中,B的最小值是              
    分析和解:此题主要用来考查考生对物体平衡条件的理解情况,同时考查考生是否能利用矢量封闭三角形或三角函数求其极值的能力.
    将图(1-1-1)首先改画为从右向左看的侧面图,如图(1-1-2)所示,分析导棒受力,并建立直角坐标系进行正交分解,也可采用共点力的合成法来做.
    根据题意F=0,即Fx=0Fy=0Fx=FBNsinα=0 
Fy=Fcosα–mg=0 ②,①/②得:
由安培力公式FB=BId ④;全电路区姆定律⑤,
联立③④⑤并整理可得
(2)借助于矢量封闭三角形来讨论,如图(1-1-3)在磁场由竖直向上逐渐变成水平的过程中,安培力由水平向右变成竖直向上,在此过程中,由图(1-1-3)看出FB先减小后增大,最终N=0FB=mg,因而B也应先减小后增大.
(3)由图(1-1-3)可知,当FB方向垂直于N的方向时FB最小,其B最小,故①,而②,③,联立①②③可得,即
评析:该题将物体的平衡条件作为重点,让考生将公式和图象有机地结合在一起,以达到简单快速解题的目的,其方法是值得提倡和借鉴的.
()棒生电类:
棒生电类型是电磁感应中的最典型模型、生电方式分为平动切割和转动切割,其模型可分为单导棒和双导棒.要从静态到动态、动态到终态加以分析讨论,其分析动态是关键.对于动态分析,可从以下过程考虑:闭合电路中的磁通量发生变化导体产生感应电流导体受安培力和其他力作用导体加速度变化速度变化感应电流变化周而复始地循环最后加速度减小至零速度达到最大导体做匀速直线运动.我们知道,电磁感应现象的实质是不同形式能量的转化过程,因此,由功能观点切入,分清楚电磁感应过程中能量转化关系,往往是我们解决电磁感应问题的关键,当然也是我们处理这类题型的有效途径.
1、单导棒问题
    1(2001年全国高考试题)如图(2-1-1)所示,一对平行光滑轨道放置在水平面上,两轨道间距L=0.20m,电阻R=1.0Ω;有一导棒静止地放在轨道上,与两轨道垂直,棒及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B=0.50T的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F沿轨道方向拉棒,使之做匀加速运动,测得力F与时间t的关系如图(2-1-2)所示.求棒的质量m和加速度a
    分析和解:此题主要用来考查学生对基本公式掌握的情况,是否能熟练将力电关系式综合在一起,再根据图象得出其am值.从图中找出有用的隐含条件是解答本题的关键.
    解法一:导棒在轨道上做匀加速直线运动,用v表示其速度,t表示时间,则有v=at ①,棒切割磁感线,产生感应电动势②,在棒、轨道和电阻的闭合电路中产生感应电流③,杆所受安培力FB=BIL ④,再由牛顿第二定律F=maFFB=ma ,联立求解①~⑤式得⑥.在图线上取两点代入⑥式,可得a=10m/s2m=0.1kg
    解法二:从Ft图线可建立方程 F=1+0.1t ①,棒受拉力F和安培力FB作用,做匀加速直线运动,其合力不随时间t变化,并考虑初始状态FB=0,因而FB的大小为FB=0.1②,再由牛顿第二定律:F=maFFB=ma ③,联立①②③可得ma=1 ④.又∵FB=BIL ⑤,而⑥,⑦,联立⑤⑥⑦得⑧,而v=at,故⑨,②/⑨得:⑩,再由④与⑩式得
评析:解法一采用了物理思维方法,即用力学的观点,再结合其F-t图象将其所求答案一一得出.解法二则采用了数学思维方法,先从F-t图象中建立起相应的直线方程,再根据力学等知识一一求得,此解法不落窠臼,有一定的创新精神.我们认为,此题不愧为电磁学中的经典习题,给人太多的启发,的确是一道选拔优秀人才的好题.
2:如图(2-1-2)所示,两根竖直放置在绝缘地面上的金属框架上端接有一电容量为C的电容器,框架上有一质量为m,长为L的金属棒,平行于地面放置,与框架接触良好且无摩擦,棒离地面的高度为h,磁感应强度为B的匀强磁场与框架平面垂直,开始时电容器不带电,将棒由静止释放,问棒落地时的速度多大?落地时间多长?
分析和解:此题主要用来考查考生对匀变速直线运动的理解,这种将其电容和导棒有机地综合在一起,使之成为一种新的题型.从另一个侧面来寻找电流的关系式,更有一种突破常规思维的创新,因而此题很具有代表性.
经分析,导棒在重力作用下下落,下落的同时产生了感应电动势.由于电容器的存在,在棒上产生充电电流,棒将受安培力的作用,因此,棒在重力作用和安培力的合力作用下向下运动,由牛顿第二定律F=ma,得故mg–FB=ma ①,FB=BiL     ②.
由于棒做加速运动,故va、ε、FB均为同一时刻的瞬时值,与此对应电容器上瞬时电量为Q=C·ε,而ε=BLv.设在时间t内,棒上电动势的变化量为ε,电容器上电量的增加量为Q,显然ε=BLv ③,Q=C·ε ④,再根据电流的定义式⑤, ⑤′,联立①~⑤′得:
由⑥式可知,a与运动时间无关,且是一个恒量,故棒做初速度为零的匀加速直线运动,其落地速度为v,则⑦,将⑥代入⑦得:⑧,落地时间可由,得,将⑥代入上式得
评析:本题应用了微元法求出Qv的关系,又利用电流和加速度的定义式,使电流i和加速度a有机地整合在一起来求解,给人一种耳目一新的感觉.读后使人颇受启示.
例:如图(2-1-3)所示,倾角为θ=30°,宽度为L=1m的足够长的U型平行光滑金属导轨固定在磁感应强度B=1T,在范围充分大的匀强磁场中,磁场方向垂直导轨平面斜向上,现用平行导轨、功率恒为6w的牵引力F,牵引一根质量m=0.2kg、电阻R=1Ω放在导轨上的导棒ab,由静止沿导轨向上移动(ab棒始终与导轨接触良好且垂直).当金属导棒ab移动S=2.8m时,获得稳定速度,在此过程中金属导棒产生的热量为Q=5.8J(不计导轨电阻及一切摩擦,g10m/s2)
(1)导棒达到稳定速度是多大?
(2)导棒从静止达到稳定速度所需时间是多少?
分析和解:此题主要用来考查考生是否能熟练运用力的平衡条件和能量守恒定律来巧解此题.
当金属导棒匀速沿斜面上升有稳定速度v时,导棒受力如图(2-1-4)所示,由力的平衡条件F=0,则F–mgsinθ–FB=0 ①,FB=BIL ②,③,ε=BLv ④,又∵F=P/v⑤,由①②③④⑤可得,整理得,代入有关数据得,解得v=2m/sv=–3m/s(舍去)
(2)由能量转化和守恒,代入数据可得t=1.5s
评析:此题较一般电磁感应类型题更能体现能量转化和守恒过程,因此,在分析和研究电磁感应中的导棒问题时,从能量观点去着手求解,往往更能触及该问题的本质,当然也是处理此类问题的关键和一把金钥匙.
近十年高考物理试卷和理科综合试卷,电磁学的导棒问题复现率高达100%(98年无纯导棒外),且多为分值较大的计算题.为何导棒问题频繁复现,原因是:导棒问题是高中物理电磁学中常用的最典型的模型,常涉及力学和热学问题,可综合多个物理高考知识点.其特点是综合性强、类型繁多、物理过程复杂,有利于对学生综合运用所学的知识从多层面、多角度、全方位分析问题和解决问题的能力考查;导棒问题是高考中的重点、难点、热点、焦点问题.www.ks5u.com
导棒问题在磁场中大致可分为两类:一类是通电导棒,使之平衡或运动;其二是导棒运动切割磁感线生电.运动模型可分为单导棒双导棒
    ()通电导棒问题
    通电导棒题型,一般为平衡和运动型,对于通电导棒平衡型,要求考生用所学物体的平衡条件(包含F=0M=0)来解答,而对于通电导棒的运动型,则要求考生用所学的牛顿运动定律、动量定理以及能量守恒结合在一起,加以分析、讨论,从而作出准确地解答.
    1:如图(1-1-1)所示,相距为d的倾角为α的光滑平行导轨(电源ε、r和电阻R均已知)处于竖直向上的匀强磁场B中,一质量为m的导棒恰能处于平衡状态,则该磁场B的大小为           ;当B由竖直向上逐渐变成水平向左的过程中,为保持棒始终静止不动,则B的大小应是         .上述过程中,B的最小值是              
    分析和解:此题主要用来考查考生对物体平衡条件的理解情况,同时考查考生是否能利用矢量封闭三角形或三角函数求其极值的能力.
    将图(1-1-1)首先改画为从右向左看的侧面图,如图(1-1-2)所示,分析导棒受力,并建立直角坐标系进行正交分解,也可采用共点力的合成法来做.
    根据题意F=0,即Fx=0Fy=0Fx=FBNsinα=0 
Fy=Fcosα–mg=0 ②,①/②得:
由安培力公式FB=BId ④;全电路区姆定律⑤,
联立③④⑤并整理可得
(2)借助于矢量封闭三角形来讨论,如图(1-1-3)在磁场由竖直向上逐渐变成水平的过程中,安培力由水平向右变成竖直向上,在此过程中,由图(1-1-3)看出FB先减小后增大,最终N=0FB=mg,因而B也应先减小后增大.
(3)由图(1-1-3)可知,当FB方向垂直于N的方向时FB最小,其B最小,故①,而②,③,联立①②③可得,即
评析:该题将物体的平衡条件作为重点,让考生将公式和图象有机地结合在一起,以达到简单快速解题的目的,其方法是值得提倡和借鉴的.
()棒生电类:
棒生电类型是电磁感应中的最典型模型、生电方式分为平动切割和转动切割,其模型可分为单导棒和双导棒.要从静态到动态、动态到终态加以分析讨论,其分析动态是关键.对于动态分析,可从以下过程考虑:闭合电路中的磁通量发生变化导体产生感应电流导体受安培力和其他力作用导体加速度变化速度变化感应电流变化周而复始地循环最后加速度减小至零速度达到最大导体做匀速直线运动.我们知道,电磁感应现象的实质是不同形式能量的转化过程,因此,由功能观点切入,分清楚电磁感应过程中能量转化关系,往往是我们解决电磁感应问题的关键,当然也是我们处理这类题型的有效途径.
1、单导棒问题
    1(2001年全国高考试题)如图(2-1-1)所示,一对平行光滑轨道放置在水平面上,两轨道间距L=0.20m,电阻R=1.0Ω;有一导棒静止地放在轨道上,与两轨道垂直,棒及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B=0.50T的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F沿轨道方向拉棒,使之做匀加速运动,测得力F与时间t的关系如图(2-1-2)所示.求棒的质量m和加速度a
    分析和解:此题主要用来考查学生对基本公式掌握的情况,是否能熟练将力电关系式综合在一起,再根据图象得出其am值.从图中找出有用的隐含条件是解答本题的关键.
    解法一:导棒在轨道上做匀加速直线运动,用v表示其速度,t表示时间,则有v=at ①,棒切割磁感线,产生感应电动势②,在棒、轨道和电阻的闭合电路中产生感应电流③,杆所受安培力FB=BIL ④,再由牛顿第二定律F=maFFB=ma ,联立求解①~⑤式得⑥.在图线上取两点代入⑥式,可得a=10m/s2m=0.1kg
    解法二:从Ft图线可建立方程 F=1+0.1t ①,棒受拉力F和安培力FB作用,做匀加速直线运动,其合力不随时间t变化,并考虑初始状态FB=0,因而FB的大小为FB=0.1②,再由牛顿第二定律:F=maFFB=ma ③,联立①②③可得ma=1 ④.又∵FB=BIL ⑤,而⑥,⑦,联立⑤⑥⑦得⑧,而v=at,故⑨,②/⑨得:⑩,再由④与⑩式得
评析:解法一采用了物理思维方法,即用力学的观点,再结合其F-t图象将其所求答案一一得出.解法二则采用了数学思维方法,先从F-t图象中建立起相应的直线方程,再根据力学等知识一一求得,此解法不落窠臼,有一定的创新精神.我们认为,此题不愧为电磁学中的经典习题,给人太多的启发,的确是一道选拔优秀人才的好题.
2:如图(2-1-2)所示,两根竖直放置在绝缘地面上的金属框架上端接有一电容量为C的电容器,框架上有一质量为m,长为L的金属棒,平行于地面放置,与框架接触良好且无摩擦,棒离地面的高度为h,磁感应强度为B的匀强磁场与框架平面垂直,开始时电容器不带电,将棒由静止释放,问棒落地时的速度多大?落地时间多长?
分析和解:此题主要用来考查考生对匀变速直线运动的理解,这种将其电容和导棒有机地综合在一起,使之成为一种新的题型.从另一个侧面来寻找电流的关系式,更有一种突破常规思维的创新,因而此题很具有代表性.
经分析,导棒在重力作用下下落,下落的同时产生了感应电动势.由于电容器的存在,在棒上产生充电电流,棒将受安培力的作用,因此,棒在重力作用和安培力的合力作用下向下运动,由牛顿第二定律F=ma,得故mg–FB=ma ①,FB=BiL     ②.
由于棒做加速运动,故va、ε、FB均为同一时刻的瞬时值,与此对应电容器上瞬时电量为Q=C·ε,而ε=BLv.设在时间t内,棒上电动势的变化量为ε,电容器上电量的增加量为Q,显然ε=BLv ③,Q=C·ε ④,再根据电流的定义式⑤, ⑤′,联立①~⑤′得:
由⑥式可知,a与运动时间无关,且是一个恒量,故棒做初速度为零的匀加速直线运动,其落地速度为v,则⑦,将⑥代入⑦得:⑧,落地时间可由,得,将⑥代入上式得
评析:本题应用了微元法求出Qv的关系,又利用电流和加速度的定义式,使电流i和加速度a有机地整合在一起来求解,给人一种耳目一新的感觉.读后使人颇受启示.
例:如图(2-1-3)所示,倾角为θ=30°,宽度为L=1m的足够长的U型平行光滑金属导轨固定在磁感应强度B=1T,在范围充分大的匀强磁场中,磁场方向垂直导轨平面斜向上,现用平行导轨、功率恒为6w的牵引力F,牵引一根质量m=0.2kg、电阻R=1Ω放在导轨上的导棒ab,由静止沿导轨向上移动(ab棒始终与导轨接触良好且垂直).当金属导棒ab移动S=2.8m时,获得稳定速度,在此过程中金属导棒产生的热量为Q=5.8J(不计导轨电阻及一切摩擦,g10m/s2)
(1)导棒达到稳定速度是多大?
(2)导棒从静止达到稳定速度所需时间是多少?
分析和解:此题主要用来考查考生是否能熟练运用力的平衡条件和能量守恒定律来巧解此题.
当金属导棒匀速沿斜面上升有稳定速度v时,导棒受力如图(2-1-4)所示,由力的平衡条件F=0,则F–mgsinθ–FB=0 ①,FB=BIL ②,③,ε=BLv ④,又∵F=P/v⑤,由①②③④⑤可得,整理得,代入有关数据得,解得v=2m/sv=–3m/s(舍去)
(2)由能量转化和守恒,代入数据可得t=1.5s
评析:此题较一般电磁感应类型题更能体现能量转化和守恒过程,因此,在分析和研究电磁感应中的导棒问题时,从能量观点去着手求解,往往更能触及该问题的本质,当然也是处理此类问题的关键和一把金钥匙.

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多