高考预测 函数与方程思想在高考中也是必考内容,特别是在函数、解析几何、三角函数等处都可能考到,几乎大多数年份高考中大题都会涉及到.因此认真体会函数与方程思想是成功高考的关键。 考点1 函数思想 一般地,函数思想就是构造函数从而利用函数的图象与性质解题,经常利用的性质是:单调性、奇偶性、周期性、最大值和最小值、图象变换等.在解题中,善于挖掘题目的隐含条件,构造出函数解析式和巧用函数的性质,是应用函数思想的关键,它广泛地应用于方程、不等式、数列等问题. 考点2 方程思想 1.方程思想就是将所求的量(或与所求的量相关的量)设成未知数,用它表示问题中的其他各量,根据题中的已知条件列出方程(组),通过解方程(组)或对方程(组)进行研究,使问题得到解决. 2.方程思想与函数思想密切相关:方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标;函数y=f(x)也可以看作二元方程f(x)-y=0,通过方程进行研究,方程f(x)=a有解,当且仅当a属于函数f(x)的值域.函数与方程的这种相互转化关系十分重要. 考点3 函数与方程思想在解题中的应用 可用函数与方程思想解决的相关问题 1.函数思想在解题中的应用主要表现在两个方面: (1)借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; (2)在研究问题中通过建立函数关系式或构造中间函数,把研究的问题化为讨论函数的有关性质,达到化难为易、化繁为简的目的. 2.方程思想在解题中的应用主要表现在四个方面: (1)解方程或解不等式 (2)带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识的应用; (3)需要转化为方程的讨论,如曲线的位置关系等; (4)构造方程或不等式求解问题.
突破点1 运用函数与方程思想解决字母(或式子)的求值或取值范围问题
突破2 运用函数与方程思想解决方程问题
规律方法 研究此类含参数的三角、指数、对数等复杂方程解的问题,通常有两种处理思路:一是分离参数构建函数,将方程有解转化为求函数的值域;二是换元,将复杂方程问题转化为熟悉的二次方程,进而利用二次方程解的分布情况构建不等式或构造函数加以解决.
突破点3 运用函数与方程思想解决不等式问题
规律方法 (1)在解决值的大小比较问题时,通过构造适当的函数,利用函数的单调性或图象解决是一种重要思想方法. (2)在解决不等式恒成立问题时,一种重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题.同时要注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更明朗化,一般地,已知存在范围的量为变量,而待求范围的量为参数. (3)在解决不等式证明问题时,构造适当的函数,利用函数方法解题是近几年各省市高考的一个热点.用导数来解决不等式问题时,一般都要先根据欲证的不等式构造函数,然后借助导数研究函数的单调性情况,再结合在一些特殊点处的函数值得到欲证的不等式.
突破点4 运用函数与方程思想解决最优化问题
规律方法 解析几何、立体几何及其实际应用等问题中的最优化问题,一般利用函数思想来解决,思路是先选择恰当的变量建立目标函数,再用函数的知识来解决. 小结反思 1.函数与方程思想在许多容易题中也有很多体现. 2.有很多时候可以将方程看成函数来研究,这就是函数思想. 3.有些时候可以将函数看成方程来研究,这就是最简单的方程思想.我们可以有意通过函数思想部分训练提升自己的数学能力.
高中数学帮帮祝你学习快乐!!! |
|
来自: 昵称38291364 > 《高中学习》